

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Programa de Pós-graduação em Química

PROVA DE SELEÇÃO PARA INGRESSO NO PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA (PERÍODO 2022.2)

DATA: 04/10/2022

INÍCIO/TÉRMINO: 8:00 h/12:00 h

CÓDIGO DA INSCRIÇÃO: _____

João Pessoa – PB

Outubro/2022

CÓDIGO DA INSCRIÇÃO: _____

1ª QUESTÃO [1,0]:

Uma amostra bruta de 1,2048 g de Na₂CO₃ é dissolvida e colocada para reagir com uma solução de CaCl₂. O carbonato de cálcio, CaCO₃, resultante após precipitação, filtragem e secagem, pesou 1,0262 g. Assumindo que as impurezas não contribuem no peso do precipitado, calcule a porcentagem de pureza do Na₂CO₃.

Resolução:

A equação da reação é a seguinte:

$$Na_2CO_3 + CaCl_2 \rightarrow CaCO_3 + 2 NaCl$$

Inicialmente deve-se determinar a quantidade de CaCO₃

$$n(CaCO_3) = \frac{1,0262 \text{ g CaCO}_3}{100,09 \text{ g CaCO}_3/mol} = 0,010253 \text{ mol}$$

A partir dos coeficientes da reação balanceada,

$$n(Na_2CO_3) = n(CaCO_3) = 0,010253 \text{ mol}$$

Cálculo da massa de Na₂CO₃ puro na amostra.

$$m(Na_2CO_3) = (0.010253 \ mol)(105.99 \ gNa_2CO_3/mol) = 1.0867 \ gNa_2CO_3$$

A percentagem de pureza é obtida dividindo a massa de Na_2CO_3 pela massa da amostra bruta e $\,$ multiplicando por 100.

% pureza =
$$\frac{1,0867 g}{1,2048 g}$$
 (100 %) = 90,20 %

2ª QUESTÃO [1,5]:

O processo Haber envolve a produção de amônia a partir de hidrogênio e nitrogênio gasoso. No laboratório, foi determinado que as concentrações de equilíbrio de NH₃, H₂, e N₂ são 0,0030 mol.L⁻¹, 0,10 mol.L⁻¹, e 0,090 mol.L⁻¹, respectivamente. Qual das seguintes afirmações descreve com mais precisão o progresso da reação quando todas as três concentrações estão em 0,3 mol.L⁻¹? E em 3,0 mol.L⁻¹?

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$$

Escolha uma resposta e justifique a sua escolha:

- a. Para 0,3 mol.L⁻¹, a reação se deslocará para a direita e para 3,0 mol.L⁻¹, a reação se deslocará para a esquerda.
- b. Para ambas as concentrações, a reação se deslocará para a direita.
- c. Para ambas as concentrações, a reação se deslocará para a esquerda.
- d. Para 3,0 mol.L⁻¹, a reação se deslocará para a esquerda e para 0,3 mol.L⁻¹, a reação se deslocará para a direita.

Resposta:

Alternativa correta: item c

Como as concentrações de equilíbrio dos reagentes e produtos são fornecidas, o valor de Keq pode ser calculado:

$$K = \frac{[NH_3]^2}{[N_2][H_2]^3} = \frac{(0,003)^2}{(0,09)(0,1)^3} = \frac{9x10^{-6}}{(9x10^{-2})(1x10^{-3})} = 0.1$$

Avaliar quando todas as concentrações são 0,3 mol.L⁻¹ usando o quociente de reação Q, que tem a mesma fórmula de Keq:

$$Q = \frac{[NH_3]^2}{[N_2][H_2]^3} = \frac{(0,3)^2}{(0,3)(0,3)^3} = \frac{1}{(9x10^{-2})} = 11$$

Avaliar quando todas as concentrações são 3,0 mol.L⁻¹ usando o quociente de reação Q, que tem a mesma fórmula de Keq:

$$Q = \frac{[NH_3]^2}{[N_2][H_2]^3} = \frac{(3)^2}{(3)(3)^3} = \frac{1}{(9)} = 0.11$$

Como Q > Keg, para ambos, a reação se deslocará para a esquerda.

3ª QUESTÃO [1,5]:

Projetos de química verde têm buscado substituir o cloro elementar utilizado no branqueamento da polpa de papel, uma vez que o cloro causa problemas por ser um oxidante muito forte, que reage com compostos orgânicos para formar subprodutos tóxicos, como furano e dioxinas.

- (a) Quando um átomo de cloro é excitado por calor ou luz, um de seus elétrons de valência é promovido a um nível mais alto de energia. Escreva a configuração eletrônica mais provável do estado excitado de energia mais baixa do átomo de cloro.
- (b) Estime o comprimento de onda (em nm) da energia que deve ser absorvida para que o elétron atinja o estado excitado da parte (a). Para isso, use a equação que representa a energia de um dado nível de energia n para átomos não-hidrogenoides:

$$E_n = -\frac{Z_{ef}^2 hR}{n^2}$$

em que Z_{ef} é a carga nuclear efetiva (considere $Z_{ef,cloro} = 6$), $h = 6,626 \times 10^{-34}$ J.s (constante de Planck) e $R = 3,29 \times 10^{15}$ Hz (constante de Rydberg).

- (a) A configuração eletrônica do átomo de cloro no estado fundamental é [Ne]3s²3p⁵. No primeiro estado excitado, a configuração mais provável será [Ne]3s²3p⁴4s¹.
- (b) Na letra (a), o elétron faz uma transição de um nível com n = 3 para um com n = 4. A energia necessária para esta transição é $\Delta E = E_4 E_3$. Usando a equação dada:

$$\Delta E = E_4 - E_3 = -Z_{ef}^2 h R \left(\frac{1}{4^2} - \frac{1}{3^2} \right)$$

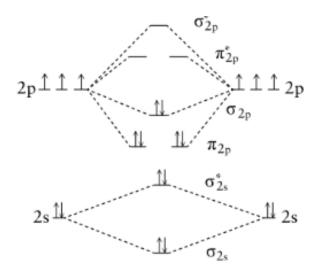
$$\Delta E = -6^2 (6,626 \times 10^{-34} J.s) (3,29 \times 10^{15} s^{-1}) \left(\frac{1}{4^2} - \frac{1}{3^2} \right) = 3,81 \times 10^{-18} J$$

E o comprimento de onda correspondente a esta energia é:

$$\Delta E = hv = h\frac{c}{\lambda}$$

$$\lambda = h\frac{c}{\Delta E}$$

$$\lambda = (6,626 \times 10^{-34} J.s) \frac{(2,998 \times 10^8 m.s^{-1})}{3.81 \times 10^{-18} J} = 5,21 \times 10^{-8} m \approx 52 nm$$


4ª QUESTÃO [1,5]:

A teoria dos orbitais moleculares (TOM) constitui uma alternativa para se ter uma visão da ligação química. De acordo com este enfoque:

- (a) Desenhe o diagrama de níveis de energia dos orbitais moleculares e determine a ordem de ligação esperada para N_2 .
- (b) Que variações na ordem de ligação, comprimento da ligação e propriedade magnética são possíveis no seguinte processo de ionização $N_2 \rightarrow N_2^+$.

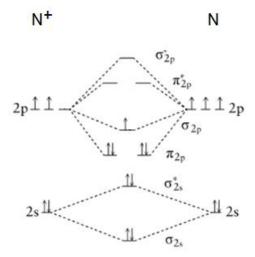
Resposta e explicação:

O diagrama dos níveis de energia do N₂ é:

Na teoria dos orbitais moleculares, a ordem de ligação, é definida como o número líquido de ligações, permitindo o cancelamento dos elétrons em orbitais ligantes pelos antiligantes:

Ordem de ligação = $\frac{1}{2}$ x (número de elétrons em orbitais ligantes — número de elétrons em orbitais antiligantes)

Ordem de ligação para
$$N_2 = \frac{1}{2} x (8 - 2) = 3$$

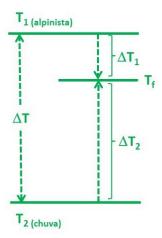

Como a ordem de ligação é 3, N₂ tem efetivamente três ligações entre os átomos de N.

b. A ordem de ligação muda de 3 para 2,5, portanto a ligação fica mais longa.

*Ordem de liga*ção para
$$N_2^+ = \frac{1}{2} \times (7 - 2) = 2,5$$

No processo de ionização ocorre mudança nas propriedades magnéticas, de diamagnético (molécula de N_2 , sem elétrons desemparelhados) para paramagnético (íon N_2^+ , um elétron desemparelhado).

O diagrama dos níveis de energia do $N_2^{\,+}$ é:


5ª QUESTÃO [1,5]:

Uma alpinista se depara com uma tempestade repentina, com chuva a uma temperatura de 6 °C, e, sem poder encontrar um abrigo, fica completamente encharcada com a chuva fria. A alpinista pesa 65,0 kg e suas roupas absorveram 1,20 kg de água da chuva. Suponha que a capacidade calorífica de seu corpo é equivalente à capacidade calorífica da água ($C_{p,água} = 4,18$ kJ K^{-1} kg $^{-1}$) e calcule o calor perdido pelo corpo da alpinista.

Sejam:

 m_1 = 65,0 kg e T_1 = 36,6 °C + 273,15 = 309,75 K, a massa e a temperatura da alpinista m_2 = 1,20 kg e T_2 = 6 °C + 273,15 = 279,15 K, a massa e a temperatura das suas roupas

Uma vez que suas roupas estão encharcadas, a alpinista e a chuva entram em contato e o calor flui da alpinista para as roupas encharcadas de chuva. A alpinista perde calor e fica mais fria enquanto as roupas encharcadas de chuva ganham calor e ficam mais quentes. A alpinista, em T_1 = 309,75 K antes da chuva, perderá calor e diminuirá a temperatura para T_f , a temperatura final. A chuva na roupa, inicialmente em T_2 = 279,15 K, ficará mais quente e atingirá a mesma temperatura final, T_f . Os dois corpos — a alpinista e as roupas encharcadas de chuva — estão agora em equilíbrio térmico, como ilustra a figura.

O calor que flui do corpo quente, q₁, é igual ao calor absorvido pelas roupas, q₂:

$$q_1 = q_2$$

$$m_1 C_{p,1} \Delta T_1 = m_2 C_{p,2} \Delta T_2$$

O enunciado estabelece que $C_{p,1}$ é igual a $C_{p,\acute{a}gua}$. Como a maior parte da massa das roupas corresponde a água (1,2 kg), podemos assumir que $C_{p,2}$ também seja igual a $C_{p,\acute{a}gua}$. Assim, essas variáveis se cancelam e temos:

$$m_1 \Delta T_1 = m_2 \Delta T_2 \tag{*}$$

CÓDIGO DA INSCRIÇÃO: _____

Da figura, podemos perceber que a diferença entre a temperatura do corpo da alpinista e a da chuva antes da troca de calor, $\Delta T = 309,75K - 279,15K = 30,6K$, é igual à soma de $\Delta T_1 + \Delta T_2$.

$$\Delta T_1 + \Delta T_2 = \Delta T$$

Assim, podemos escrever ΔT_2 em função de ΔT_1 :

$$\Delta T_2 = 30.6K - \Delta T_1$$

E substituir em (*) para encontrar ΔT_1 :

$$m_1 \Delta T_1 = m_2 (30.6K - \Delta T_1)$$

$$m_1 \Delta T_1 + m_2 \Delta T_1 = m_2.30,6K$$

$$\Delta T_1 = \frac{m_2.30,6K}{(m_1 + m_2)} = \frac{(1,2kg)(30,6K)}{(65,0kg + 1,2kg)} = 0,555K$$

Agora, basta substituir este valor na expressão de q1, juntamente com o valor da capacidade calorífica da água:

$$q_1 = m_1 C_{p,1} \Delta T_1 = (65,0kg)(4,18 \times 10^3 kJK^{-1}kg^{-1})(0,555K) = 150,8 kJ$$

CÓDIGO DA INSCRIÇÃO: _____

6ª QUESTÃO [1,5]:

O reagente cloreto de terc-butila, t-BuCl, em solvente aquoso, troca o grupo Cl⁻ por um grupo HO⁻ para dar terc-butanol, t-BuOH, como produto. A velocidade da reação é determinada pela taxa de formação do intermediário carbocátion, t-Bu⁺ e é de primeira ordem com relação ao t-BuCl. O desaparecimento do reagente pode ser monitorado pela condutância elétrica ou, de forma aproximada, usando um indicador ácido-base. Se começarmos uma reação misturando t-BuCl ao solvente para obter uma concentração de 0,020 mol-L⁻¹ a uma temperatura de 23 °C, depois de 45 s observamos que a concentração de t-BuCl é 8,13×10⁻³ mol L⁻¹ e após 2 min e 15 s, ela cai para 1,31×10⁻³ mol L⁻¹. Com base nesses dados, (a) determine a constante de velocidade da reação de hidrólise de t-BuCl e (b) calcule o tempo que leva para que a concentração do reagente seja reduzida à metade do seu valor inicial.

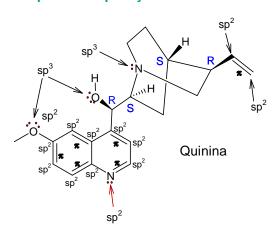
(a) Uma reação de primeira ordem segue a lei de velocidade integrada

$$ln[R]_t = -kt + ln[R]_0$$

em que $[R]_t$ é a concentração do reagente no tempo t, k é a constante de velocidade e $[R]_0$ é a concentração inicial do reagente. Assim, substituir os valores dados na lei de velocidade integrada para encontrar k:

$$k = \frac{\ln[R]_0 - \ln[R]_t}{t} = \frac{\ln 0,020 - \ln 8,3 \times 10^{-3}}{45 \text{ s}} = 0,02 \text{ s}^{-1}$$

(b) Para calcular o tempo que leva para que a concentração caia a metade do seu valor inicial, basta resolver a lei de velocidade integrada para t, usando o valor de k encontrado na letra (a), e [R]t pela concentração inicial dividida por dois:


$$t = \frac{\ln[R]_0 - \ln[R]_t}{k} = \frac{\ln 0,020 - \ln 0,010}{0.02s^{-1}} = 34,7 s$$

7ª QUESTÃO [1,5]:

A quinina é um alcaloide de gosto amargo que tem propriedades anti-inflamatórias, antipiréticas, analgésicas e antimaláricas, além de ser um composto utilizado como flavorizante da água tônica. A partir da sua estrutura molecular, indique quais afirmações são verdadeiras e quais são falsas a respeito das características da estrutura química desta substância.

- I. Há 6 ligações π e 4 pares de elétrons isolados.
- II. Há 4 centros estereogênicos, sendo 2 com a configuração S e 2 com a configuração R.
- III. A fórmula molecular dessa substância é C₂₀H₂₄N₂O₂.
- IV. Todos os átomos de oxigênio estão hibridizados sp³.
- V. Existe 1 átomo de nitrogênio e 9 átomos de carbono com hibridização sp².
- VI. A ligação olefínica apresenta isomeria geométrica cis-trans.

Resposta e explicação:

- I. Falsa. A estrutura da quinina mostra 6 ligações p e 6 pares de elétrons isolados.
- II. Verdadeira.
- III. Verdadeira.
- IV. Verdadeira.
- V. Falsa. Existe 1 átomo de nitrogênio e 11 átomos de carbono com hibridização sp2.
- VI. Falsa. Não apresenta isomeria geométrica cis-trans porque o grupo vinílico (-CH=CH₂) possui Csp² com substituintes iguais.

fone: (11) 3032-2299

copyright @ 2022 SBQ

2 4,0026	HÉLIO 10 20,180	Ne	Ш П	A P	ARGÔNIO	36 83,798(2)	۲	KRIPTÔNIO	54 131,29	Xe	XENÔNIO	98	R	RADÔNIO	118		OGANESSÔNIO
BELA PERIÓDICA DOS ELEMENTOS	17 9 18,998 10	ш		35,45* 18	CLORO	34 78,971(8) 35 79,904*	ы	ввомо	53 126,90 54	_	IODO	82	At	ASTATO	117	e E	FLEHÓVIO MOSCÓVIO LIVERMÓRIO TENNESSO OGANESSÓNIO
	16 8 15,999*	0	OXIGÊNIO	30,374 TB 32,06* TV	ENXOFRE	34 78,971(8)	Se	SELÊNIO	121,76 52 127,60(3) 53	Te	TELÚRIO	84	В	POLÔNIO	116		LIVERMÓRIO
	15 7 14,007*8	Z	× 1		Si	33 74,922	As	ARSÊNIO		Sp	ANTIMÔNIO	83 208,98 84	Ξ	BISMUTO	115	MG	MOSCÓVIO
	41 8 12,011 * 1	ပ	CARBONO	A Si Session	SILÍCIO	69,723 32 72,630(8) 33	Ge	GERMÂNIO	114,82 50 118,71 51	S	ESTANHO	200,59 81 204,38* 82 207,2* 83	Pb	СНИМВО	114		FLERÓVIO
	13 5 10,81* 6	Ш	BORO	A	5		Сa	GÁLIO		드	INDIO	81 204,38*	F	TÁLIO	113		NIHÔNIO
ä					12	30 65,38(2) 31	Zn	ZINCO	48 112,41 49	ပ်	CÁDMIO	196,97 80 200,59	H	MERCÚRIO	112		MEITNÉRIO DARMSTÁDTIO ROENTGÊNIO COPERNÍCIO
SO		00 8	ırais	Q	11	58,693 29 63,546(3) 30	ည	COBRE	47 107,87 48	Ag	PRATA		Au	OURO	111		HOENTGÊNIO
A D		com asteris	ao isotópica restres nat	Of - sintético	_		Ż	NÍQUEL	46 106,42 47	Pd	PALÁDIO	192,22 78 195,08 79	ቯ	PLATINA	110		DARMSTÁDTIC
	Irão#:#	ncional, se o viupac.org]	a distribuiça mostras ter		٠,] 27 58,933 28	ပ	COBALTO	45 102,91 46	뜐	RÓDIO	192,28	<u>د</u>	IRÍDIO	109		MEITNÉRIO
310	Peso atômico padrão#‡	# Peso atômico convencional, se com asterisco (mais detalhes: www.iupac.org)	de isótopos com uma distribuição isotópica característica em amostras terrestres naturais	Ne - gás	8	54,938 26 55,845(2) 27	Pe	FERRO	44 101,07[2] 45	Bu	RUTÊNIO	76 190,23(3	0s	ÓSMIO	108	@ <u>I</u>	HÁSSIO
PEF	– Peso atí	# Peso atd (mais de	de isóto caracter	Hg - líquido	' '		Z	MANGANÊS	95,95 43	ဥ	MOLIBDÊNIO TECNÉCIO	180,35 74 183,84 75 186,21 76 190,23(3) 77	Re	RÊNIO	107		BÓHRIO
LA	14 28,085*	S.	SILÍCIO		اس	24 51,996 25	ပ်	CRÔMIO		Σ	MOLIBDÊNIO	24 183,8 ₄	≥	TUNGSTÊNIO	106	(A)	SEABÓRGIO
ABE	Número 17		Nome	Zn - sólido	٠,	7 23 50,942 24	>	VANÁDIO	1 41 92,906 42	S	NIÓBIO	73	Ta	TÂNTALO	105		OÚBNIO
7	Núr atô	Sî	Z	N	١,	3 22 47,867	F	TITÂNIO	88,906 40 91,224(2)	Z	ZIRCÔNIO	72 178,49	Ξ	HÁFNIO	104		нитневново
	[ci			ĸ	`'	1 21 44,956 22	လွ	ESCÂNDIO	87,62 39 88,906	>	(TRIO	e	LANTANÍDIOS 57 - 71			ACTINÍDIOS 89 - 103	
	U 4	Be	BERÍLIO	Na Mg	MAGNÉSIO	39,098 20 40,078(4) 21	Ca	CÁLCIO		ວັ	ESTRÔNCIO	1 56 137,33	Ba	BÁRIO	88	Ва	ВА́ОІО
, and .	HIDROGÊNIO 3 6,94* 4	=	LÍTIO		'nΙ	39,091	¥	POTÁSSIO	37 85,468 38	路	RUBÍDIO	55 132,91	S	CÉSIO	87	Г	FRÂNCIO

Atenção: para saber como obter uma tabela periódica com muitas outras informações adicionais, acesse www.sbq.org.br/divulgacao <u>G</u>d Ш LANTÂNIO

www.sbq.org.br