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Abstract: A water supply system is considered an essential service to the population as it is about
providing an essential good for life. This system typically consists of several sensors, transducers,
pumps, etc., and some of these elements have high costs and/or complex installation. The indirect
measurement of a quantity can be used to obtain a desired variable, dispensing with the use of a
specific sensor in the plant. Among the contributions of this technique is the design of the pressure
controller using the adaptive control, as well as the use of an artificial neural network for the
construction of nonlinear models using inherent system parameters such as pressure, engine rotation
frequency and control valve angle, with the purpose of estimating the flow. Among the various
contributions of the research, we can highlight the suppression in the acquisition of physical flow
meters, the elimination of physical installation and others. The validation was carried out through
tests in an experimental bench located in the Laboratory of Energy and Hydraulic Efficiency in
Sanitation of the Federal University of Paraiba. The results of the soft sensor were compared with
those of an electromagnetic flux sensor, obtaining a maximum error of 10%.

Keywords: indirect measurement; soft sensor; water supply systems; artificial neural networks

1. Introduction

Water is a natural resource of fundamental importance for the survival of humans
and other living beings, and a good as relevant as this must be preserved in relation to
its conscious use. The problem of water waste, not only in domestic waste (excessive use
of water to wash sidewalks, time-consuming cleanliness with open registers, etc.) but
mainly in waste from the point of view of supply systems (leakage in pipes, for example)
makes the obstacle much higher. The feasibility of means that mitigate waste through an
efficient distribution to a given location is extremely important. Thus, in the context of
water distribution to the population, there is a need for an efficient resource distribution
system capable of meeting urban and rural demands. In this way, a water supply system
is defined as the set of works, equipment and services intended to supply drinking water
to a community for the purposes of domestic consumption, public services, industrial
consumption and other utilities [1]. This water supplied by the system must be in sufficient
quantity and of the best quality from a physical, chemical and bacteriological point of view.

A water supply system (WSS) represents the entire process of supplying treated water,
ranging from obtaining it to its use by the population. For this, a WSS uses a set of
equipment, works and services, whose objective is to supply the water demand of a given
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population. Thus, the typical elements of a WSS are catchment (from a spring), pumping
station, pipeline, water treatment station (WTS), reservoirs, distribution network and finally
household connections (consumers).

The water stored in the distribution reservoir after the intake, elevation/adduction
and WTS steps can be pressurized in the pipeline in two ways: by gravity and/or by a
motor-pump set. By gravity, water is transported to the consumer without the need to use
electricity. On the other hand, in the second case, an artificial impulsion system is needed,
that is, by a hydraulic motor-pump coupled to an electric motor and/or by means of a
booster (BST) [1].

In many practical cases, the non-linearity of the topography of a region causes the
water pumping systems to operate in such a way as to meet these unevennesses, as in cases
where there are low areas (topographic regions with low topographic elevation) and high
areas (topographic regions with high topographic elevation in relation to low areas). In
the case of the high zone, the pumping station, located in the low zone, must increase the
pumping head to supply the high zone region. However, this increase causes an excess of
pressure in the low zone and, therefore, tends to increase leakage losses and maintenance
costs due to pipe rupture [1,2].

To solve excess pressure in the low zone and avoid damage to pipes and other instal-
lations, there are some solutions to be adopted: one of them is the installation of control
valves (pressure-reducing valves or PRVs), automatic or not, with the purpose of modifying
the pressures at certain points in the network. This solution is usually adopted, as pumps
operating in water supply systems generally work at their nominal speed.

Another alternative is the application of mechanisms to control the rotation speed of
electric motors and consequently the hydraulic energy supplied by the pumps. For this
purpose, frequency inverters are generally adopted [2,3]. These devices convert a voltage
into another with desired (controlled) amplitude and frequency. When used to drive a
motor-pump set, the frequency inverter can manage the electrical and hydraulic parameters
of a pumping station, because by regulating the rotation speed, it also regulates the head
(pressure), flow and associated electrical power [4]. The energy released to promote the
increase in flow and hydraulic pressure depends on the rotation speed of the pump set.

Several techniques can be used to promote the control of the frequency inverter
applied to WSS for pressure management to keep it stable and contribute to the reduction
in losses (electrical and hydraulic). The benefits of pressure control are to increase the
useful life of pipes and accessories, increase system reliability, reduce hydraulic transients
and reduce wasted electrical energy [1]. For a supply system to have a satisfactory technical
and economic performance, it is necessary to perform pressure control. The uniformity
of pressure in the distribution network, through this control, reduces the frequency of
ruptures, excessive water consumption induced by pressure and the volume lost in leaks.

Several technologies can be used to measure the main physical quantities in WSS. The
flow rate, which is of greater interest in this work, can be measured using technologies
such as electromagnetic and ultrasonic, among others [5,6]. Other techniques can also
be used to measure the flow, such as the equations that characterize the operation of a
pump (pressure–flow curve). However, the use of this estimation method requires constant
system calibrations, since they are based on the constructive characteristics of the pump,
which wears out during operation, varying its characteristics over time [7].

This work describes the application of the adaptive control technique in a water
supply system that emulates two regions with different topographic elevations. The control
technique mentioned above acts as an aid in obtaining the necessary parameters for the
validation of a virtual instrument, called a soft sensor, used to estimate the flow in this
water supply system in the artificial neural network (ANN). The main contributions of the
proposed architecture are summarized as follows: (a) the indirect measurements carried
out through the soft sensor do not require the use of real flow instruments, providing
savings in the acquisition of these instruments and eliminating the complexity of their
installation [5,6]; (b) the construction of an ANN-based indirect reconstruction block, which
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allows the construction of nonlinear models of the pressure inputs, opening and closing
angle of control valves, and the frequency of the inverter with the flow output; and (c) the
development of virtual sensors or soft sensors with dynamic response to input variables [7].

2. Related Work

An alternative method for estimating the flow can be derived from the equations that
characterize the operation of a pump (pressure–flow curves). However, the use of this
estimation method requires a calibration constant, as they are based on the constructive
characteristics of the pump, which wears out during operation. In [7] a system with
feedback using ANN and controller using fuzzy logic was proposed for indirect estimation
of flow in a water supply network. The authors used a MISO (multiple inputs single output)
system to estimate the flow rate based on the rotation frequency of a motor-pump set and
the pressure existing in the plant. The results were satisfactory, reaching the objective
proposed in the tests to which the technique was tried. However, the authors did not
submit the final product to tests that contained entries with outliers or noise that could
compromise the efficiency of the technique in the face of these adversities and did not insert
other entries for analysis. The study was limited to a MISO-type system. In [8], the authors
discussed the possible applicability of soft sensors in industry using the characteristics of
process data that are critical for the development of data-based virtual instruments. These
characteristics are common to many fields in the process industry, such as the chemical
industry, bioprocess industry, steel industry, etc. The focus of the work, of a theoretical
nature, was evident in data-based soft sensors because of their growing popularity and
potential. In [9], the authors proposed a NARX (nonlinear auto-regressive with exogenous
inputs) ANN model for real-time prediction and control in a WSS application. The model
developed estimated time–variable consumption demand in an equivalent way, exploring
operational data of pressure and flow in real time and historically, establishing a functional
relationship between the main variables of the network based on pressure. In addition,
a training scheme for ANN with a combination of offline data training and online data
training was proposed. The results showed that the model was considered applicable and
satisfactory in terms of tracking and predicting network failures. Although the performance
was satisfactory and the research objectives were achieved according to the authors, they
did not implement the technique with other variables associated with a typical WSS, such
as rotation frequency of motors that drive water, pressure-reducing valves, solenoid valves,
etc., and did not promote a comparative study between some ANNs to verify the efficiency
among them for the purpose of the study. It is also not described in the work if the system
was validated with disturbances in the inputs or spurious signals that could compromise
the efficiency of the system in the face of these undesirable conditions.

In [10] a methodology was proposed to detect false data and replace missing or
false data (data reconstruction according to the authors) in flow data measurements in a
WSS located in the city of Barcelona, Spain. Using ANN MLP BP (Multilayer Multilayer
Perceptron Backpropagation) and Genetic Algorithms, the authors modeled time series
generated from measurements of flow transducers located in the plant and used confidence
intervals (values within a pre-established acceptable range) to validate the information.
The authors, however, did not carry out comparative studies between other ANNs to verify
which one would be more efficient in the applicability of the research. Furthermore, it is not
described in the publication whether the implemented system experienced disturbances
in the inputs, outliers or spurious signals that could compromise the efficiency of that
system. In [11] studies were carried out on the predictability of future water demands
in a distribution network (located in the city of Laminga in Nigeria) using ANN. They
used NeuNETPro 2.3 software and developed a model based on historical water demand
records using 15 pressure demand nodes. The results obtained served for the model to
perform the control and supervision of the hydraulic parameters of the demand nodes
and reduced the cost of water production. Pressure estimators were used as alternatives
to the complex mathematical models and nonlinearities found in the plant. However, the
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authors did not use other estimation parameters to verify if the developed product could
achieve greater optimization and the work does not mention tests with spurious signals in
certain inputs. In [12] a soft sensor was implemented for estimating the total amount of
phosphorus and chemical oxygen demand (COD) in streams and tributaries of an effluent
treatment plant in a small Norwegian municipality. A mathematical model was developed
identifying statistical correlations to feed the virtual sensor data. The data obtained with the
virtual measurements were compared with measurements of the variables, demonstrating
satisfactory results in relation to the estimation of the measured quantities.

In [13], a robotic replica of a human spinal column was implemented and printed in 3D
to include an artificial disc implant and equipped with a set of magnetic soft sensors. This
replica aimed at a new approach to allow surgeons to visualize the post-operative effects of
an artificial disc implant in a specific way for a given patient before performing surgery,
minimizing post-operative effects. Benchtop experiments showed that the array of magnetic
soft sensors was able to accurately detect the location and amplitude of forces exerted on
the analyzed column, which were successfully classified by four different machine learning
algorithms: support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF)
and artificial neural network (ANN). The RF and RNA algorithms were able to classify
load locations applied at 3.25 mm distance with 98.39% ± 1.50% and 98.05% ± 1.56%,
respectively. In addition, the ANN had an accuracy of 94.46% ± 2.84% to classify the place
where a load of 10 g was applied. The replica of the spine implanted by artificial disk was
subjected to flexion and extension by a robotic arm. Five different spine postures were
successfully classified with 100% ± 0.0% accuracy with the ANN using the soft magnetic
sensor array.

Contextualizing for studies using adaptive controllers, in [14], a simultaneous control
of altitude and vibrations was developed for a spacecraft in a three-dimensional space,
subject to disturbances from inputs and unknown faults. The system dynamics were
modeled as an infinite dimensional space, using partial differential equations. The control
strategy, of adaptive type, was implemented to suppress the vibrations of the spacecraft’s
flexible panel during altitude stabilization. Several simulations were carried out and the
results obtained proved the efficiency of the implemented adaptive control proposal. In [15],
a robust adaptive controller for flexible riser vibratory systems was developed, in which
these systems were affected by input nonlinearities and unknown external disturbances.
An auxiliary system was built and tuned to develop robust adaptive threshold control
to constrain vibrational displacement and eliminate the effect of input nonlinearities. In
addition, an adaptive upper bound boundary perturbation law was developed along with a
vibration control strategy to estimate the magnitude of the unknown boundary disturbances.
Simulation results with the developed techniques were performed and the results obtained
corroborated a satisfactory performance of the implemented adaptive control.

In this work, the conception of a virtual instrument is proposed, called a soft sensor,
capable of measuring (indirectly) the flow from several input parameters commonly used
in water supply systems. The experimental bench used consists of a water supply sys-
tem that emulates a region with a topographical dimension. Thus, the aim is, with the
implementation of the soft sensor, to evaluate the performance of the virtual instrument,
through various system performance scenarios, such as no control action on the plant, with
control action on the plant as well as the insertion of disturbances and noise in the system.
Noise can occur in real instruments commonly found in water supply systems and can
compromise the correct measurement of physical quantities. Thus, the aim is, as one of the
contributions of this work, to fill in some gaps found in some works pertinent to the topic.

3. Theoretical Background
3.1. Soft Sensor

In recent decades, soft sensors have established themselves as a valuable alternative
to traditional means for the acquisition of critical process variables, system monitoring and
other tasks that are related to industrial process control [8]. These virtual sensors generally
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help regarding the unavailability of (real) hardware sensors in various industrial segments,
thus allowing for less occurrence of failures and better control performance. Soft sensors
are emerging as a viable alternative for the real-time monitoring of parameters that either
lack a reliable measuring principle or are measured using expensive online sensors [12].
The purpose of a soft sensor is to estimate a variable that is not directly measured but that
is related by a suitable model to several other process variables that are directly measured.
Thus, for the context of applicability in WSS, the basis for the development of the soft sensor
used is the ANNs (artificial neural networks). The option for the developed technique was
based on some properties of the ANNs in which they were decisive for the adoption of this
technique, such as: (a) no need for mathematical models; (b) generalizability; (c) pattern
classification; and (d) learning, among others [7].

3.2. Indirect Measurements

Several technologies can be used to measure the main physical quantities in WSS. The
flow rate, which is of greater interest in this work, can be measured using technologies
such as electromagnetic and ultrasonic signals, among others. Regarding technologies
that employ electromagnetic principles, associated equipment has higher acquisition and
installation costs, depending on the installation diameter and, consequently, on the volume
to be measured [5,6].

Other techniques can also be used to measure the flow, such as the equations that
characterize the operation of a pump (pressure–flow curve). However, the use of this
estimation method requires constant system calibrations, since they are based on the
constructive characteristics of the pump, which wears out during operation, varying its
characteristics over time [7]. Given the various studies presented, it is important to use
techniques that eliminate (or mitigate) the situations, and indirect measurement techniques
can be very useful in this regard.

In general, indirect measurements estimate the main variable (or quantity or magni-
tude) of an electrical signal obtained by directly measuring a secondary variable that is
related to the main variable. The realization of an indirect measurement assumes a mathe-
matical model that describes the association between the quantities involved and generally,
the relationship between the secondary variable and the main variable is described by
differential equations.

Figure 1 illustrates a detailed flowchart of a feedback measurement system adapted
from the model proposed by [16], in which the measurement means P(.) is dynamically
related to the primary variable, xp, the secondary variable, xs and the actuation signal, u.
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Figure 1. Generic diagram of a measurement feedback system adapted from [16].

Using sensors to acquire input variables, the secondary variable xs is acquired and
converted into an electrical signal y using the sensor function f (.). Then, this signal is
converted to a digital signal through an AD inverter providing a signal ỹ, which is used
to estimate the secondary quantity xs, using the reconstruction function Rd. This last
relationship corresponds to the inverse function of the sensor implemented in a discrete
system. The signal x̂p corresponds to the reconstruction of the signal coming from the
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input but indirectly from the controller c(.) and the direct reconstruction Rd(.). Equation (1)
describes the conversion factor to obtain the xs signal [7].

xs = Rd(y) = f−1(y) (1)

The DA inverter and the actuators present are responsible for controlling the secondary
variable xs at a certain reference value (setpoint). For this, the controller uses the measured
values of the secondary variable together with the setpoint value, generating a discrete
signal (u). This signal is converted into an analog signal (through a D/A inverter) and then
through an actuator; this converted signal is applied to the P(.) plant. Thus, after these
procedures, the main variable is estimated in the indirect reconstruction block Ri(.), using
the values of the control signal. Equation (2) represents this estimation.

xp = Ri(xs, u) (2)

The actuation signal modifies the dynamics of the plant P(.) so that the response of
the secondary signal xs follows the setpoint value; therefore, it will modify the dynamics in
the estimation of the main variable xp. The convergence speed of this estimate will depend
on how the controller is designed.

3.3. Adaptive Control

In today’s language, the term adapt means to modify behavior according to new
circumstances or situations. In the engineering context, adaptive control can be defined
as a control technique that could change its behavior according to changes in parameters,
in the dynamics of a process or by disturbances that affect this system [15]. Thus, a fixed
gain controller (PID for example) is not an adaptive system. An adaptive controller must
have the ability to update its control law by changing its gains (or parameters) in real time.
In applications involving WSS, external parameters such as temperature, equipment wear
and disturbances can alter the system’s operational dynamics. Thus, the use of controllers
with static gains, in these scenarios, ends up not being convenient because they are tuned
considering that the system is invariant in time and/or only for a specific operating range.
Furthermore, the existence of noise and interference from different sources can directly
influence the controller’s performance and, in the worst cases, lead to instability in the
system [4]. To control these categories of system, controllers with adaptive gains stand
out from those with static gains, as they could modify their parameters according to the
changes suffered by the system [7,14].

Direct Adaptive Control

Adaptive controllers can be divided into two large groups: direct and indirect. In the
direct method, the controller gains are estimated directly from a pre-established reference
model; that is, it is not necessary to carry out the identification of plant parameters [4].
Considering a reference signal r and an output y, in the direct method, the controller gains
(vector θ) are estimated directly, usually from a pre-established reference model; that is,
there is no need for direct estimation of the plant parameters. In the indirect method, the
plant model is determined as a function of the unknown plant parameter vector, requiring
a real-time estimator, using the input and output of plant signals. Therefore, the generated
model is treated as true, and its parameters are used for the calculation of controller
variables. Figure 2 illustrates the representation of a direct adaptive controller, which will
be used for pressure control in this work.

For the direct adaptive control method, most works use the Adaptive reference model
controller (MRAC). In this controller, the plant output signal is compared with a model
output reference signal, generating a tracking error (ε). Using a cost function, the controller
parameters are adjusted based on this error, causing the plant output signal to converge
with that of the reference model. The matching condition is reached when ε is equal to zero.
The controller parameters are adjusted based on this error, converging the plant output
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signal to that of the reference model. Generally, for this cost function, the MSE (mean
squared error) is the standard adopted [4]. The MSE was adopted to perform the statistical
analysis of error tracking in this work.
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Thus, a reference model control system is one in which the dynamic behavior of the
closed-loop system is ideally identical to that of the reference model chosen Wm(s) by
the designer, as illustrated in Figure 3, so that the y sign follows the ym sign. That is, the
performance specifications of the controller are defined by a predefined transfer function (in
this case, Wm), considering a certain input signal r. From the input variables u and output
y of the plant G(s), a parameter vector θ is calculated in such a way that the tracking error
e1 is minimized. Thus, it is desired that the response y of the plant follows the response ym
of the reference model Wm(s) [15].
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The IMRAC-PID controller (proportional–integral–derivative initialized model refer-
ence adaptive control) was developed by [4] and used in this research to promote pressure
management in the system. This controlled pressure will be further detailed in the experi-



Sensors 2022, 22, 3084 8 of 25

ments of Sections 4.6.3 and 4.6.4. The control action was useful to help the project objective
through a subset of tests belonging to a larger set of validations (tests with and without
controller action in the plant).

4. Proposed Methodology
4.1. Setup of Measurement

The experiments were carried out on an experimental bench set up on the premises of
the Laboratory of Energy and Hydraulic Efficiency in Sanitation at the Federal University
of Paraíba—LENHS/UFPB. The methodology described in this work can be applied to
large WSSs, such as those existing in city water supply networks. The plant used in this
research emulates a real WSS. However, for the purpose of validating the indirect flow
estimation technique, the proportions corresponding to the physical elements adopted
here correspond to those of an experimental bench. In this work, an experimental system
was used, as illustrated in Figure 4, which emulates a water supply system with variable
demand and Figure 5 illustrates the bench layout, respectively.
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The pumping system was composed of a motor-pump set (three-phase, 220/380 V,
3 hp) which is made up of a centrifugal pump coupled to an electric motor. This structure
was responsible for pushing water from the reservoir to the distribution system, which
was composed of sensors and pipes (PVC). The pump’s rotation speed was controlled by a
frequency inverter. In addition, at the outlet of the system was an automated proportional
valve (PRV or CV-1), which served to emulate the variable water demand by regulating the
cross-sectional area through which water flowed through the pipe. The electrical signals
from the sensors in the form of a current (4–20 mA) were converted to voltage (0–10 V)
by an electrical conditioning board. Afterward, the voltage levels were converted into a
digital signal by a data acquisition system (DAQ) model NI-USB 6229, with a sampling
frequency set at 10 samples/s. Finally, the digital signal was transmitting via USB to a
personal computer (PC) for storage and digital processing. Next, application of the control
algorithm was carried out; then, an actuation signal was generated and sent from the PC
to the frequency inverter via DAQ. To validate the estimation technique presented in this
work, the aging of the devices used, such as the natural wear of the pump, pipes and other
elements belonging to the system, were not considered.

Figure 6 illustrates a schematic representation of the process topology used in the
survey. Furthermore, it is possible to observe which specific signals were used by the
estimator to measure the flow in the system. The choices of input variables for the
controller—pressure and rotation frequency—were given by correlations they have: the
pressure has a direct correlation with the frequency of the inverter (in this case the rotation
frequency) and the angle of the CV-1. This last input constitutes an additional input (in
addition to the pressure and rotation frequency) of the soft sensor.
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The pressure signals (P) collected in PT-3 were converted into a digital signal by means
of an analog-to-digital converter (ADC), the result of which is a signal that corresponds to
the input port of the adaptive controller as well as the control block indirect reconstruction
(soft sensor). The controller output was a frequency signal (f ) acting for the variation in
the CMB rotation as well as to compose one of the soft sensor inputs together with the
CV-1 angle and the pressure (P). The frequency signal obtained at the controller output was
converted into an analog signal, by means of a digital-analog converter (DAC), that served
as an input for the frequency inverter actuation and, consequently, for the variation in the
pump rotation speed.

4.2. Controller Structure

The structure of the adaptive controller developed by [4] and used in this work consists
of the following elements: reference model in which the dynamic behavior of the closed-
loop system is ideally identical to that of the transfer function chosen (Wm(s)); plant that
is the physical system to be controlled (P(θ∗)); controller is the proportional–integral–
derivative (including Kp, Ki and Kp) with variable earnings (C); estimated plant that
corresponds to the system identification function (Pe); parametric estimation mechanism
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implements estimation of plant parameters (θ) and adaptation mechanism of the controller
that update controller’s gains (θe).

Figure 7 illustrates the block diagram of the control system [4].
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The optimization criterion used in this work to evaluate the estimation mechanisms
and parametric adaptation of the adaptive controller used was the MSE. The unknown
parameter vector function θ∗ was responsible for generating the plant model P(θ∗). A real-
time estimator generated an estimate of θ(t) of θ at each instant of time t, calculating the
input u and the output yp. As a result of this processing, the estimation of the parameters
θ(t) determined an estimated model, characterized by P∗(θ(t)), which corresponds to the
true of the plant at time t. This result was used to determine the controller parameters or
gain vector θc(t). The sentence that describes this representation can be visualized through
Equation (3) [4].

θc(t) = F(θc(t)) (3)

4.3. Applied Methodology

Equations commonly used for fluid analysis in water systems could be used to de-
fine the dynamic behavior of the system, together with the Darcy–Weisbach Equation.
However, the equation’s form is a nonlinear and multivariable modeling of a complex
solution and with approximations that limit its generalized application [17]. To overcome
these disadvantages, this work proposes the use of artificial neural networks (ANNs) to
compose the indirect estimation of the flow. The main advantage for using an ANN is
the lack of mathematical models, mainly because it is a complex and multivariable prob-
lem, due to its generalization capacity, fault tolerance, self-learning, noise immunity and
adaptability [13,17].

In this context, for performance comparison, this work addresses two ANN topologies
to compose the indirect flow estimation block Ri(.), as shown in Figures 8 and 9. The first
ANN contains three input vectors (frequency ( f ), angle of the valve CV-1 (a) and pressure
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measurement (P) and an output (flow (Q)), called multi-layer feedforward backpropagation
ANN. The second ANN uses the same input and output vectors; however, the input
vector is added by the feedback of the past value of the estimated flow (Q(k − 1)), called
ANN nonlinear autoregressive exogenous (NARX). The choices of input variables for
the controller—pressure and motor rotation frequency—were given by correlations they
have; pressure has a direct correlation with the frequency (in this case the motor rotation
frequency) and the CV-1 valve angle. This last input constitutes an additional input (in
addition to the pressure and motor rotation frequency) of the soft sensor.
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Table 1 contains the results of several tests performed to obtain the most optimized
parameters for the ANNs proposed in this work. The fourth line (highlighted in bold)
corresponds to the optimized parameters used in the ANNs.

Table 1. Tests performed to obtain the optimized parameters of the ANNs.

MSE Gradient Epoch Training
Algorithm

Number of
Hidden Layers

Number of
Neurons

Activation
Function

5.589 × 10−12 6.12 × 10−6 1000 LM 1 5 tansig
7.313 × 10−11 9.61 × 10−6 1000 LM 1 6 tansig
1.383 × 10−11 3.68 × 10−6 1000 LM 1 7 tansig
1.639 × 10−10 1.32 × 10−9 1000 LM 1 8 tansig
3.214 × 10−10 3.30 × 10−6 1000 LM 1 9 tansig
3.434 × 10−10 2.02 × 10−7 1000 LM 1 10 tansig
3.511 × 10−9 3.47 × 10−5 1000 LM 1 11 tansig
1.313 × 10−10 3.11 × 10−6 1000 LM 1 12 tansig
6.112 × 10−10 2.68 × 10−6 1000 LM 1 25 tansig

The proposed ANNs have a hidden layer with eight neurons followed by an output
layer with one neuron, determined empirically to find the network with the least error dur-
ing the training period. The activation function adopted for the hidden layer is hyperbolic
tangent sigmoid (tansig), and that of the output layer is linear. The training algorithm used
was Levenberg–Marquardt (LM) for both proposed structures. The time spent to carry out
the training of the two networks was also observed.
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The parameters contained in Table 1 and which were used to optimize the elements
of the ANNs are the MSE, which is normally used as a network performance indicator;
gradient, that corresponds to an algorithm that seeks to minimize the MSE in order to obtain
an optimized set of weights, which will end the training process, making the network able
to produce acceptable output patterns (lowest value obtained was 1.32 × 10−9); and epoch,
which corresponds to a complete cycle in which the neural network “visualized” all its
data, among the parameters already mentioned.

4.4. Implementation of the Soft Sensor Using Artificial Neural Networks

For the implementation of the soft sensor, the Matlab software (v. 2020b) was used, its
subsequent integration to the Supervisory System was implemented in Labview (v. 2017).
The sequence of steps used to design the soft sensor can be visualized through a flowchart
represented by Figure 10.
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Data collection (step 1): this step corresponds to the acquisition of data from the
instruments and equipment of the plant that will serve as inputs to the flow estimator. The
data of interest are the rotation frequency of the motor; the opening (or closing) angle of
the CV-1 valve; and the pressure relative of the plant (collected through sensor PT-3) and
the flow (collected through sensor FT-1).

Pre-processing (step 2): the pre-treatment of data aims to detect and remove present
anomalies to increase and improve their quality [18]. At this stage, the LOWESS (locally
weighted regression scatter plot smoothing) data-smoothing technique was used for pre-
treatment of these collected data.

Database construction (step 3): the collected data (step 1) were arranged in column-
type vectors, separated according to each variable of interest to the estimator. This informa-
tion will compose the ANN input parameter database. For each variable collected, about
70% of the first data obtained were separated for the ANN training step (described in step
4) and another number (about 30%) were used for the ANN testing step (also described in
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step 4). The criterion for dividing the data to be used in the training and testing phases of
the networks was empirical.

MLP and NARX (step 4): This step corresponds, in fact, to the implementation of
ANN networks: the multilayer feedforward perceptron backpropagation and the NARX
(nonlinear autoregressive with exogenous inputs) and the result of these implementations
is the soft sensor (step 5). Figures 11 and 12 illustrate, respectively, the structures of the
implemented MLP and NARX ANNs.
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Two types of networks capable of performing the soft sensor function were imple-
mented: one network using the multi-layer backpropagation ANN technique and the other
using the nonlinear autoregressive ANN technique with exogenous inputs. From then on,
tests were carried out with both networks to verify which one would be adopted to, in
fact, act as a flow estimator on the experimental bench. Section 4.5 below, contains the
experimental procedures for choosing, among the two ANNs, which one was to be the
candidate to exercise the soft sensor function.

4.5. Tests for the Choosing of the Soft Sensor

The test was carried out with the objective of verifying which of the two developed soft
sensors was the most efficient in terms of flow estimation when the system emulated the
intermediate consumption demand in the experimental bench network. For this condition,



Sensors 2022, 22, 3084 14 of 25

the following premises were adopted for the collection of plant data: the pump started
from rest (0 Hz) and then its rotation frequency varied in steps of 30 Hz, 40 Hz, 50 Hz,
60 Hz, 50 Hz, 40 Hz and 30 Hz every 3 min; the valves CV-1 and CV-3 remained with
their opening angles always in the position of 45◦ each, while the valve CV-2 was in
the position of 0◦ and the pressure (referring to the PT-3 sensor) was measured with the
experimental system operating in an open loop. One of the estimator inputs was the CV-1
valve opening or closing angle. The CV-2 and CV-3 valves (angle CV-2 and angle CV-3),
shown in the parameter Tables of some of the experiments performed, were auxiliary only
(and not visible through Figure 5). They promote demand variation and simulate network
disturbances, and they are not part of the soft sensor input parameters. Table 2 shows the
parameters used for the tests related to test.

Table 2. Parameters used for the test for choosing of the soft sensor.

Rotation Frequency
(Hz) Pressure (mH2O) Angle CV-1 (◦) Angle CV-2 (◦) Angle CV-3 (◦)

30 7.93 45 0 45
40 12.13 45 0 45
50 17.23 45 0 45
60 24.21 45 0 45
50 17.62 45 0 45
40 12.09 45 0 45
30 7.86 45 0 45

Regarding the data collection procedure, around 2160 samples were obtained. The
sampling rate was fixed at 10 samples/s, in which the first 1500 samples obtained were
used for training the ANNs and the remaining 660 were used for the test step. Input data
(frequency, valve angle and system pressure) were pre-treated before being processed by
the ANNs. Section 4.6 (and its subsections) contains the experimental procedures regarding
NARX validation based on testing without the control action on the system and with the
control action on the system.

4.6. Soft Sensor Validation

From the results presented in the previous section, only the soft sensor implemented
through the ANN of the NARX type was adopted for the validation tests of the flow
estimator. For this new category of tests, the monitoring of the actual flow (measured
through the electromagnetic flow sensor FT-1) versus estimated flow was carried out
simultaneously and during the real-time performance of the tests. For this, the supervisory
implemented in LabVIEW was used for parameterization and control of the plant and the
soft sensor, developed in Matlab, whose code was inserted into the supervisory. The tests
described below validate, in fact, the implemented soft sensor, whether with or without the
controller acting on the system.

4.6.1. Soft Sensor Validation without the Action Controller: Testing A

The validation test was carried out with the objective of verifying the insertion of
sudden consumption demands in the water supply network without the controller acting to
verify the performance of the soft sensor in this situation. Sudden demands on water supply
systems can be caused by obstructions or leaks in the network, among other possibilities.
For this condition, the following premises were adopted: the pump started from rest (0 Hz),
and from then on, the rotation frequency of the motor was randomly modified within an
interval of 30 to 60 Hz, with a duration of 2 min each modification; the three control valves
had their opening angle varied within a range of 0◦ to 75◦ with a duration of 2 min each
modification and the pressure were measured with the experimental system operating in
an open loop.

Table 3 shows the parameters used for the tests related to test.
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Table 3. Parameters used for the test of the soft sensor validation: testing A.

Rotation Frequency
(Hz) Pressure (mH2O) Angle CV-1 (◦) Angle CV-2 (◦) Angle CV-3 (◦)

50 4.9 41 35 72
41 1.4 61 18 77
60 6.3 9 6 52
39 3.6 73 68 30
45 4.3 20 15 52
46 14.5 21 76 48
58 18.5 3 84 14
35 7.2 50 51 64
30 5.4 11 35 31

4.6.2. Soft Sensor Validation without the Action Controller: Testing B

This test aimed to verify the performance of the soft sensor when the three inputs (PT-3
pressure, CV-1 valve and the rotation frequency of the motor) were subjected to outliers.
Table 4 shows the parameters used for the tests related to test. Another common challenge
for developing a practice soft sensor is its noise reliability [18]. Type signals with different
amplitudes and without the controller action. For this test, the following assumptions were
adopted: the rotation frequency of the motor variation starting at rest (0 Hz) and being
switched to 30 Hz, 40 Hz, 50 Hz, 60 Hz, 50 Hz, 40 Hz and 30 Hz. The time adopted for each
frequency change was one minute; the pressure acted freely, being measured following the
frequency variation in the motor, and the valve CV-1 was at 0◦ while CV-2 and CV-3 were
at 45◦ during test execution.

Table 4. Parameters used for the test of the soft sensor validation: testing B.

Frequency
(Hz) Tags

Insertion
Outliers

(s)
Pressure (mH2O) Angle CV-1 (◦) Angle CV-2 (◦) Angle CV-3 (◦)

30 I 10 to 50 5.91 0 45 45
40 II 15 to 30 10.55 0 45 45
50 III 8 to 40 16.90 0 45 45
60 IV 10 to 55 23.17 0 45 45
50 V 20 to 40 16.35 0 45 45
40 VI 15 to 45 10.66 0 45 45
30 VII 5 to 55 6.34 0 45 45

4.6.3. Soft Sensor Validation with the Action Controller: Testing C

This test aimed to verify the performance of the soft sensor by estimating the flow
when the controller was subject to change in the desired pressure value. For this test, the
following assumptions were considered: Kp = Ki = Kd = α1 = α2 = α3 = 0.01. The
parameters Kp, Ki and Kd represent the proportional, integral and derivative gains of the
IMRAC-PID controller, respectively. The constants α1, α2 and α3 represent the estimation
parameters of the controller’s model Wm(s) design to the pressure control, from the same
plant used in this work [4] and visualized through Figure 3 (gain adaptation mechanisms
block); the CV-2 and CV-3 valves remained with their opening angles always at the 45◦

position, while the CV-1 valve was at the 0◦ position and the pump was initially at rest
(0 Hz); the desired pressure values were equal to 8, 10, 12, 14, 16, 14, 12 and 10 mH2O with
an approximate duration of 60 s each SP from the stabilization of the first one, and the
rotation frequency of the motor followed the pressure setpoint.

4.6.4. Soft Sensor Validation with the Action Controller: Testing D

This test aimed to verify the performance of the soft sensor when the three inputs
(pressure in PT-3, valve CV-1 and the rotation frequency of the motor) were subjected to
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signal-type noise with different amplitudes. This scenario represents one of the worst
situations that can happen to the estimator’s input elements. For this test, the following
assumptions were adopted: Kp = Ki = Kd = α1 = α2 = α3 = 0.01; the CV-2 and CV-3
valves remained with their opening angles always in the 45◦ position, while the CV-1 valve
was in the 0◦ position and the pump was initially at rest (0 Hz); the pressure setpoint was
fixed at 10 mH2O throughout the test; the rotation frequency of the motor followed the
pressure setpoint from the beginning until its stabilization and the spurious (continuous
noise type) signals inserted into PT-3, CV-1 and rotation frequency of the motor had a
duration of approximately 100 s.

5. Experimental Results

In this section, the results of the proposed methodology are presented, evaluating
the controller performance for the secondary variable (pressure), and the multi-layer
feedforward backpropagation ANN and ANN-NAXR networks, presented in Section 4.4,
making comparisons for robustness and dynamic response. The results were collected in
the water supply system installed in the Laboratory of Hydraulic and Energy Efficiency in
Sanitation at the Federal University of Paraíba (LENHS/UFPB), as shown in Figure 4.

5.1. Results about the Choosing of the Soft Sensor

Initially, the MLP backpropagation ANN was examined for the test phase of the
network using the input data: rotation frequency of the motor, CV-1 angle and pressure
measured in PT-3. The estimated output was the flow. Figure 11 illustrates the flow
measured through an electromagnetic flow sensor (FT-1) and the estimated flow resulting
from the test phase for the MLP backpropagation ANN. There is a measurement deviation
regarding the flow rate of up to 5.5 L/s (outlier) between the estimated and measured
values along the curves visualized in Figure 13. This discrepancy occurs due to the ANN’s
lack of knowledge of the system dynamics, that is, the lack of knowledge of the flow
behavior in the previous samples.
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Figure 13. Measurement and estimation of flow during ANN testing using Multi-layer Feedforward
Backpropagation.

To quantify the tracking of the error obtained through the results obtained from the
data that composed the curves in Figure 13, some statistical measures referring to the
estimator based on MLP were determined: mean of the relative error, whose result was
0.0248%; maximum relative error equal to 20.9210%; and standard deviation of the relative
error equal to 1.0281%. To compare the performance between the estimators, the simulation
for the NARX test phase was also performed, using the same MLP input data. However, the
flow data resulting from the processing of PT-3, frequency and CV-1 inputs was reinserted
(feedback) as an additional Q(k − 1) delayed input. This feedback introduces the dynamics
to the system so that network learning is constantly optimized. Figure 14 illustrates the
output regarding the estimated flow using the estimator developed in NARX.
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Figure 14. Measurement and estimation of flow during ANN testing using NARX.

To quantify the tracking of the error through the data that made up the graphs illus-
trated in Figure 14, statistical measures were determined for the NARX: mean relative
error, whose result was 0.0015%; maximum relative error equal to 0.3090%; and standard
deviation of the relative error equal to 0.0247%. Table 5 shows a comparison between the
calculated measurements for the two implemented soft sensors, showing the efficiency
with respect to the accuracy and reliability of the estimation of the flow using a NARX in
the simulation phase.

Table 5. Ratio between statistical measures: choosing of the soft sensor.

Mean
MLP BP/NARX ANN

Maximum Error
MLP BP/NARX ANN

Standard Deviation
MLP BP/NARX ANN

16.6173% 67.7072% 41.5573%

5.2. Soft Sensor Validation without the Action Controller: Testing A

Figure 15 illustrates the curve corresponding to pressure in PT-3 (with and without
raw data processing) and its correspondence for each frequency change entered in this
validation test. Frequency variation was randomly defined within a range of 30 Hz to
60 Hz.
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Figure 15. Pressure in PT-3 with and without data pre-processing.

The result of the comparison between the actual value of the flow measured through
the FT-1 electromagnetic instrument and the flow estimator for the conditions mentioned in
this test is illustrated in Figure 16. It is observed that the estimated value curve is very close
to the flow curve with relative error average equal to 0.0054% (values measured by the
electromagnetic flux transducer), as highlighted. The oscillations present at the beginning
are due to the previous presence of water in the pipes.

It is observed that, for this test, it is not enough for the motor to have increasing
frequency values for the pressure to also rise proportionally. Now, in addition to this
factor, there is the combination of opening and/or closing of the three control valves
that can influence both the estimated and actual flow curves, sometimes acting in an
inversely proportional way to the increase in pressure in the system. To quantify the error
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tracking through the data that composed the graphs illustrated in Figure 16, some statistical
measures related to the relative error were determined by comparing the actual versus
estimated flow curves. The results obtained are shown in Table 6.
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Table 6. Ratio between statistical measures: testing A.

Mean Maximum Error Standard Deviation

0.0054% 19.2742% 0.7384%

When observing the data referring to Table 6, it is observed that the mean and standard
deviation of the tracking relative error have values much lower than 1%, which infers good
performance by the soft sensor. It is important to note that all data were considered for the
statistical analysis of error tracking; therefore, the maximum error obtained this relatively
high value. Still in relation to this statistical measure, its result from the initial oscillations
presents in the system resulting from the previous presence of water in the pipes. However,
they do not interfere with the measurement performance of the soft sensor that adequately
measured the flow for any given conditions.

5.3. Soft Sensor Validation without the Action Controller: Testing B

Figure 17 illustrates the signal obtained for the three inputs with distinct random
noises with Gaussian distribution in each one of them. The noises entered for this specific
test are made up of signals of a Gaussian nature. They were divided into segments, each
denoted by a Roman numeral, and each has a reference amplitude (constant value) added
to a random value within a specific range. The nature of each noise segment used in this
test can be seen in Table 7.
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Table 7. Noises inserted into the soft sensor inputs: testing B.

Tags
Reference Range

Angle
(◦)

Angle
Limits

(◦)

Reference Range
Pressure
(mH2O)

Pressure
Limits

(mH2O)

Reference Range
Frequency

(Hz)

Frequency
Limits
(Hz)

I 0 −30 to 10 6 −35 to 35 30 10 to 50
II 0 −30 to 10 10 −30 to 40 40 22 to 60
III 0 −30 to 10 18 −25 to 50 50 30 to 70
IV 0 −30 to 10 22 −18 to 30 60 45 to 80
V 0 −30 to 10 18 −25 to 45 50 30 to 58
VI 0 −30 to 10 10 −30 to 40 40 22 to 58
VII 0 −30 to 10 6 −30 to 35 30 15 to 50

The result of the comparison between the actual value of the flow measured through
the FT-1 electromagnetic instrument and the flow estimator for the conditions mentioned
in this test is shown in Figure 18.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 27 
 

 

 

Figure 18. Estimated and real flow: Testing B.  

The curve of the value estimated by the soft sensor is very close to the flow curve 

(values measured by the electromagnetic flux transducer), as highlighted. Quantitatively 

and in standardizing tests for all validations, some statistical measures were taken regard-

ing error tracking, and the results obtained are shown in Table 8. 

Table 8. Ratio between statistical measures: testing B. 

Error Average Maximum Error Standard Deviation 

0.0059% 2.8093% 0.3763% 

The efficiency of the soft sensor allows the indirect measurement of flow to be carried 

out efficiently even with the possibility of spurious signals at its three inputs. It is ob-

served, from the comparison between the error-tracking statistical measures, that all re-

sults have values much lower than 1%, validating the performance of the soft sensor. Re-

garding the maximum error obtained with the analysis of all points on the curves, its re-

sult of 2.81% results from the initial oscillations already described and from the consider-

ation of all the points that form the analyzed curves. 

5.4. Soft Sensor Validation with the Action Controller: Testing C 

Figure 19 illustrates the controlled pressure curve with fixed setpoint increments and 

decrements. It is observed that the plant took about 135 s for its signal to reach the first 

value of the adopted reference model (8 mH2O). The larger the above-mentioned param-

eters, the longer the time needed to reach the setpoint value. On the other hand, the per-

formance of the system was better in terms of a smoother response. 

 

Figure 19. Controlled plant responses with abrupt variations in consumption demand. 

The result of the comparison between the real value of the flow measured through 

the electromagnetic instrument FT-1 and the estimator through the soft sensor is illus-

trated in Figure 20. The soft sensor was able to properly estimate the flow. The oscillations 
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The curve of the value estimated by the soft sensor is very close to the flow curve
(values measured by the electromagnetic flux transducer), as highlighted. Quantitatively
and in standardizing tests for all validations, some statistical measures were taken regarding
error tracking, and the results obtained are shown in Table 8.

Table 8. Ratio between statistical measures: testing B.

Error Average Maximum Error Standard Deviation

0.0059% 2.8093% 0.3763%

The efficiency of the soft sensor allows the indirect measurement of flow to be carried
out efficiently even with the possibility of spurious signals at its three inputs. It is observed,
from the comparison between the error-tracking statistical measures, that all results have
values much lower than 1%, validating the performance of the soft sensor. Regarding the
maximum error obtained with the analysis of all points on the curves, its result of 2.81%
results from the initial oscillations already described and from the consideration of all the
points that form the analyzed curves.

5.4. Soft Sensor Validation with the Action Controller: Testing C

Figure 19 illustrates the controlled pressure curve with fixed setpoint increments and
decrements. It is observed that the plant took about 135 s for its signal to reach the first value
of the adopted reference model (8 mH2O). The larger the above-mentioned parameters, the
longer the time needed to reach the setpoint value. On the other hand, the performance of
the system was better in terms of a smoother response.

The result of the comparison between the real value of the flow measured through the
electromagnetic instrument FT-1 and the estimator through the soft sensor is illustrated
in Figure 20. The soft sensor was able to properly estimate the flow. The oscillations in
the first moments of time are the effects of the presence of water in the pipes before the
controller is activated. When the signal is stabilized, the elimination of these transients is
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observed. However, even with initial sudden oscillations, it is already possible to verify the
performance of the soft sensor following the actual flow value in any situation.
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For quantitative analysis, some statistical measures related to error tracking were
determined by comparing the data that composed the curves in Figure 18. The results
obtained are shown in Table 9.

Table 9. Statistical measures: testing C.

Error Average Maximum Error Standard Deviation

0.0081% 4.2124% 0.4138%

When comparing the mean and standard deviation of the tracking error, it is observed
that both have values less than 1% (especially the mean), which infers good performance of
the soft sensor. In relation to the maximum error (4.21%), its result is caused by the initial
oscillations present in the system as well as from the statistical analysis that considered all
points on the curve (including the initial oscillations of the system) and not only during
the steady state. However, they do not interfere with the measurement performance of the
soft sensor.

5.5. Soft Sensor Validation with the Action Controller: Testing D

The noises entered for this specific test are made up of signals of a Gaussian nature,
and each has a reference amplitude (constant value) added to a random value within a
specific range. The nature of each noise segment used in this test can be seen in Table 10.

Table 10. Noises inserted into the soft sensor inputs: testing D.

Variable Reference Range Limits

Angle (◦) 0 −30 to 10
Pressure (mH2O) 10 −30 to 40
Frequency (Hz) 39 20 to 58

Figure 21 illustrates the noisy curves at the rotation frequency of the motor, valve
CV-1 and pressure sensor PT-3. Random and distinct noises were inserted for each input of
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the estimator with a duration of 200 s (starting at 100 s and ending at 300 s). The noises
remained until the approximate time of 300 s.
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Figure 21. Rotation frequency, CV-1 valve angle and PT-3 pressure input signals with noise.

The result of the comparison between the actual value of the flow measured through
the FT-1 electromagnetic instrument and the flow estimator is illustrated in Figure 22.
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Figure 22. Estimated versus actual flow rate for inserting noise into the three soft sensor inputs.

The soft sensor was able to adequately estimate the flow in the worst-case scenario:
the insertion of spurious signals simultaneously in all its inputs. As in the previous tests,
the oscillations present in the first moments of time are a consequence of the presence of
water in the pipes before the controller is activated. However, even with initial oscillations
and extreme input situations, a satisfactory performance of the soft sensor is observed,
following the actual flow rate in such situations. To analyze the data referring to the points
that form the curves illustrated in Figure 22, some statistical measures related to the error
tracking were determined for the curve (complete curve) as well as for the section referring
only to the time instant of insertion of noises. The results obtained are shown in Table 11.

Table 11. Statistical measures: testing D.

Corresponding Excerpt Mean Error Maximun Error Standard Error Deviation

Just noises 2.3618 × 10−4% 0.1232% 0.0481%

Full curve 0.0306% 1.6982% 0.3510%

When comparing the error-tracking statistical measures, it is observed that all results
have values well below 1%, which induces satisfactory performance by the soft sensor
even with the insertion of noise in its three inputs. Concomitant spurious signals in the
three inputs of the flow estimator correspond to one of the worst scenarios to verify the
robustness of the virtual instrument. Regarding the maximum error obtained with the
analysis of all points of the curves, its result, although with a low value, is caused by, as in
the previous tests, the initial oscillations already described and the consideration of all the
points that form the analyzed curves and not just the stabilized part of the curves upon
reaching the steady state.
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6. Discussion of Results

The validation tests were carried out with the developed soft sensor (NARX), chosen
from the test results. These validation tests were categorized into tests without the presence
of the controller acting on the system and with the presence of the controller acting on the
system. The first test performed, without the controller’s action, whose test was categorized
as “Validation A”, aimed to verify the insertion of sudden consumption demands in the
water supply network without the controller’s action to verify the performance of the soft
sensor in this situation. It was verified that the soft sensor was able to estimate the flow as
expected when compared to the real FT-1 instrument. It was verified that the mean and
standard deviation of the tracking error have values much lower than 1%, which infers
good performance by the soft sensor. The other validation test was performed by inserting
spurious signals into all inputs of the flow estimator. As a result, it was observed that the
mean of the tracking relative error as well as the standard deviation of the tracking error
resulted in values much lower than 1%. Only the maximum error value had a value above
1%. However, this was due to the previous presence of water in the pipes. Even in the face
of adversities, the efficiency of the soft sensor allowed the indirect measurement of flow
to be carried out satisfactorily in the tests without the presence of the controller acting in
the plant.

The other soft sensor validation tests were performed by the controller in the plant. The
controller used was the indirect adaptive type by reference model with PID (IMRAC-PID).
The first validation test aimed to verify the performance of the soft sensor by estimating the
flow when the controller was subject to change in the desired pressure value. Error-related
statistical parameters (based on the tracking error using the MSE criterion) were obtained
as a comparison between the estimated flow curve versus the actual flow through an
electromagnetic meter. Another test was also carried out by inserting spurious signals in
all its inputs to verify the performance of the virtual sensor in the face of these adversities.
An average relative error and a standard deviation well below 1% were obtained and the
highest value related to the maximum error obtained in only one of the tests performed
occurred due to initial oscillations in the estimation curve in the first moments of flow
measurement. This is because of the presence of water in the pipes. However, even with
initial sudden oscillations, it was possible to verify the performance of the soft sensor
following the actual flow value in any situation of all the tests performed.

7. Conclusions

The main objective of this work was the implementation of a virtual instrument,
called a soft sensor, capable of measuring the flow in a water supply system. This virtual
instrument replaces the use of a physical instrument with the advantages of significantly
reducing acquisition costs as well as eliminating the operational complexity of a physical
installation, depending on the measurement point of interest. For the design of this soft
sensor, two structures were designed, using artificial neural network approaches belonging
to the field of artificial intelligence: a multilayer ANN based on learning called multi-layer
perceptron (ANN MLP) and an ANN based on output feedback, called neural network
auto-regressive with exogenous inputs (NARX). The advantages of choosing and using
ANNs are the dispensing of complex mathematical models used in other techniques that
often limit the real scope of the system due to many considerations/restrictions to be carried
out; the ability to learn and generalize applications regarding ANNs; and the adaptability
capacity, among other advantages.

To evaluate the performance of the ANNs in the flow estimation process, the two
designed networks (MLP and NARX) were implemented in the Matlab programming
environment, where they went through the training and testing phases. After the test
process, the NARX-type ANN was adopted to estimate the flow in a water supply system
through an experimental platform, located in the Laboratory of Energy and Hydraulic
Efficiency in Sanitation (LENHS/UFPB). The estimated flow values obtained by NARX
were compared with values obtained through a real electromagnetic flow sensor present
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in the system. The validation tests using only the NARX network had as their objective
the performance of the soft sensor being able to measure the flow in real time, when
compared to a flow signal coming from an electromagnetic flow sensor without the action
of the controller in the plant. It was observed that without the control action on the
plant, the results obtained regarding the statistical parameters mean relative error and
standard deviation of the relative error presented values much lower than 1% for the
situation of insertion of disturbances in the system, as well as when there was insertion of
outliers. This shows the efficiency of the flow estimation technique for the presented cases
(without controller).

Pressure control in pumping systems is essential for reducing real losses and increasing
energy efficiency, and it was verified that the adaptive controller behaved adequately. For
tests where there was a control action acting on the system, the results obtained regarding
the statistical parameters mean error, maximum error and standard deviation of the error
(relative values) presented values much lower than 1% for the situation of insertion of
disturbances in the system as well as when there was insertion of noise in the plant. This
shows the efficiency of the flow estimation technique for the cases.

In the experimental bench used to validate the flow estimation through the soft sensor,
only one reference reservoir was used. However, there is another reservoir coupled to the
system, but not used in this research nor visualized through Figure 5. However, because
they are two coupled reservoirs, their levels varied as the water was pumped through the
system and the method estimation could also be applied to systems with different levels
(different topographical heights). The absence of a level gauge in the reservoir used in this
research made the validation unfeasible in case the pumping pressure was variable at the
pump suction point.

In future research, other control techniques may be used, such as neural or neural-fuzzy
control, which do not require prior knowledge of plant dynamics; the evaluation of other
topologies of artificial neural networks such as ARMAX or convolutional neural networks,
for example; and the use of other input parameters of a WSS and the use of autoencoders
(or another technique) to reconstruct and correct measurements. Another suggestion for
future work would be the application of the indirect flow estimation technique in real
water supply systems. The large variations (consumption demand, presentation, etc.) that
normally occur in real systems would serve as a very robust validation of the technique
presented in this work.

Author Contributions: Conceptualization, R.P.G.L., T.K.S.F. and J.M.M.V.; methodology, R.P.G.L.,
T.K.S.F. and J.M.M.V.; software, R.P.G.L. and T.K.S.F.; validation, R.P.G.L., T.K.S.F. and J.M.M.V.;
formal analysis, R.P.G.L.; investigation, R.P.G.L. and T.K.S.F.; resources, H.P.G.; data curation, R.P.G.L.
and J.M.M.V.; writing—original draft preparation, R.P.G.L., T.K.S.F. and J.M.M.V.; writing—review
and editing, R.P.G.L., T.K.S.F., J.M.M.V. and H.P.G.; visualization, J.M.M.V.; supervision, J.M.M.V.;
project administration, J.M.M.V.; funding acquisition, J.M.M.V. All authors have read and agreed to
the published version of the manuscript.

Funding: Federal University of Paraiba. Internal call PROPESQ/UFPB N◦ 01/2022. Support Program
for Scientific Production in the Postgraduate Graduation of UFPB Pro-Publishing.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable or no new data were created or analyzed
in this study. Data sharing is not applicable to this article.

Acknowledgments: The authors would like to thank the PostGraduate Program in Electrical Engi-
neering of UFPB, the PostGraduate Program in Mechanical Engineering of UFPB and the LENHS
Laboratory of UFPB for the financial and material support in the development of this work.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 3084 24 of 25

Abbreviations
The following abbreviations are used in this manuscript:
ANN Artificial Neural Network
DAQ Data Acquisition System
FT Flow Transducer
IFPE Federal Institute of Pernambuco
IMRAC-PID Indirect Adaptive Control
LENHS Laboratory of Energy Efficiency and Hydraulics in Sanitation
MRAC Reference Model Adaptive
MSE Mean Squared Error
MLP BP Multilayer Perceptron Backpropagation
NARX Nonlinear Autoregressive with Exogenous Inputs
NI National Instruments
PC Personal computer
PID Proportional–Integral–Derivative
PT Pressure Transducers
PVC Polyvinyl chloride
SP Setpoint
UFPB Federal University of Paraiba
USB Universal Serial Bus
CV-1 Automated Proportional Valve (main valve)
CV-2 Automated Proportional Valve (auxiliar valve)
CV-3 Automated Proportional Valve (auxiliar valve)
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