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Abstract
Sustainable management of water supply systems is a major challenge within the frame-
work of the water-energy nexus. The main strategies to improve the operation of these sys-
tems are related to increasing the hydraulic and energy efficiency of pumping systems. In 
this context, this work presents a new artificial neural network (ANN) controller to improve 
the operation of water distribution systems (WDSs) that includes in its algorithm the spe-
cific energy consumption (SEC) as a decision parameter. Therefore, pressure control at the 
measuring points is also based on the energy efficiency of the pumps. The technique was 
applied to control the pressures in an experimental setup that emulates a WDS with two 
consumption zones with different topographies. For this purpose, the controller acted on a 
conventional pump, a booster pump and a control valve. To analyze the performance under 
the controller action, tests were performed emulating water-demand scenarios, introduc-
ing perturbations and changing the pressure setpoints. The real-time control performance 
was proven based on the dynamic performance, steady-state performance and SEC. The 
experimental results showed that the proposed controller kept the pressures close to the 
setpoints and provided a reduction in the SEC between 15.1% and 17.8%, compared with 
the uncontrolled system, and an economy that varied from 2.5% to 8.1% compared with the 
performance of the ANN based only on pressure control.
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1 Introduction

Sustainable management of water distribution systems (WDSs) is becoming a major chal-
lenge within the framework of the water-energy nexus. Reduced water loss and an efficient 
use of energy are considered essential to contain environmental impacts and the high oper-
ational costs of the WDSs. Water utilities use 0.4–2.3% of primary energy or 0.6–6.2% of 
regional electricity (Kenway et al. 2019), while 80–90% of this consumption is absorbed by 
motor-pump sets (Moreira and Ramos 2013).

According to Zhang et  al. (2012) and Carravetta et  al. (2017), the main strategies to 
increase the energy efficiency of WDSs are related to increasing the hydraulic efficiency 
of the pumps and the electrical efficiency of motors, introducing performance standards 
to which the pumps on the market must comply, assessing energy use in the network and 
using variable frequency drives (VFDs) to increase the efficiency of pumping systems 
operating in variable conditions.

In addition to reducing energy consumption, VFDs can increase the hydraulic effi-
ciency of WDSs through pressure management. Pressure control has the following ben-
efits: increases the useful life of the pipes, increases the reliability of the facilities, reduces 
hydraulic transients, reduces water consumption and reduces the volume of water losses. 
Koor et al. (2016) proposed an algorithm running variable-speed pumps (VSP) working in 
parallel to keep them running close to the best efficiency point provided by the manufac-
turer. The authors solved the complex optimization task to maximize the total efficiency of 
pumping systems, and thereby minimize energy consumption.

To solve the problem of poor quality and wasted electric energy of a direct pump, Peng 
et  al. (2009) introduced a constant pressure in a WDS, adopting embedded fuzzy control 
technology using a programmable logic controller (PLC) and VFD. Comparing the value of 
measured pressure with its setpoint value, the PLC controls the power supply frequency by 
the output signal on fuzzy calculation to control the rotation speed of the pump and adjust the 
pressure. The real-time control (RTC) performance was appropriate according to the experi-
mentation validated. The hardware module was steady and reliable, and the fuzzy controller 
was valid and able to guarantee better stability in water pressure. Hongfeng et al. (2009) and 
Ding and Cao (2010) performed comparative analyses between the fuzzy PID (proportional-
integral-derivative) controller and the conventional PID controller to maintain a constant 
pressure in a WDS. Taking the pump as the load of the asynchronous motor allowed the 
whole system to be simplified as a second-order model. Comparisons were made in terms of 
dynamic performance, steady-state performance and noise immunity. The simulation results 
showed that the fuzzy PID controller not only had a faster response, slighter overshoot and 
stronger noise immunity, but also a wider adaptation range and higher accuracy in stability 
than the PID controller.

Among the first research that investigated the RTC for pressure control in WDS were 
the proportional algorithms presented by Campisano et al. (2012, 2016). Campisano et al. 
(2012, 2016) reported the results of a numerical investigation aimed at assessing the effec-
tiveness of valve control in reducing leakage in WDSs. They programmed logic units using 
proportional algorithms, which regulated the closure settings of the valves by pressure 
measurements carried out at appropriate control nodes.

Creaco et al. (2019) presented a review of the current state-of-the-art RTC of water dis-
tribution systems. The researchers presented basic concepts related to RTC in addition to 
sensors, actuator devices and controllers commonly used in WDSs. The work also provides 
a perspective of potential future developments in this area.
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In practice, it is common to apply PID control techniques in WDS pumping systems and 
control valves. Designing and tuning these controllers appears to be conceptually intuitive but 
can be hard in practice if multiple (and often conflicting) objectives, such as short transience 
and high stability, are to be achieved. However, in some specific cases, a WDS cannot undergo 
major changes in its operation conditions (e.g., the operation of fire hydrants or a break of a 
transmission main), with the risk that the control will become unstable or require adjustments 
to its parameters. Besides that, if a large time delay is not correctly considered, then oscilla-
tions and instabilities in the control process can occur in controlling the pump rotation in large 
WDSs (Moura et al. 2018; Moreira et al. 2021).

Neural network controllers have been highlighted due to their degree of applicability and 
can be used in complex dynamic systems with multiple variables. Depending on the configu-
ration and type of algorithm, these controllers can be used for forecasting, optimization and 
process control.

Artificial neural networks (ANNs) can be described as nonlinear mathematical techniques 
designed by simulation of biological nervous systems (Vaferi et  al. 2016).  In other words, 
ANNs are a rough approximation and simplified simulation of biological neural networks 
(Islam et al. 2020). ANNs have been applied in almost all branches of science (Meshram et al. 
2021), including agricultural (Ravindran et al. 2021; Sharifi et al. 2021), environment (Scheres 
and Van der Putten 2017; Sekertekin et  al. 2020), geology (Pham et al. 2017; Mandal and 
Mondal 2019), hydrology (Sharghi et al. 2018; Wu et al. 2021), and water supply (Vijay and 
Kamaraj 2021; Wadkar et al. 2021).

Antsaklis and Passino (1989) and Narendra and Parthasarathy (1990) presented one of the 
first studies on the use of this technique for intelligent process control. Narendra and Parthasar-
athy (1990) demonstrated that neural networks can be used effectively to identify and control 
nonlinear dynamic systems. The authors presented models of networks with multiple layers 
and recurrent, with a static and dynamic backpropagation method for parameter adjustment.

Barros Filho et al. (2018) and Moura et al. (2018) developed intelligent controllers based 
on ANNs for water supplies. The purpose of the controllers was to automate the process and 
define the operating state of the variable-speed pumps. The systems developed were generic, 
which allowed the application of their control structure in similar processes, and they were 
applied in an experimental setup that emulated real systems. Results showed excellent perfor-
mance in terms of pressure regulation.

The development of controllers for WDSs is mainly intended to regulate the pressure at the 
measurement points, the distributed flow or the control of tank filling, disregarding the search 
for the best operating point of the pumps in the process. The inclusion of specific energy con-
sumption (SEC) as a decision parameter in the proposed controller algorithm is an innovation 
presented in this work, as it allows the control of the pump rotation speed to be based on the 
energy efficiency of the system, as well. The SEC was adopted to evaluate the performance of 
the system because it is an efficiency indicator widely used by utility managers.

This paper presents a new adaptive ANN controller for the pressure control of water distri-
bution systems with pumps and valves acting simultaneously.

2  Experimental Setup

The implementation of the experimental setup (Fig.  1) was intended to display a quan-
titative assessment of savings from the energy efficiency point of view with respect to a 
conventional operation. It emulated a real WDS with two consumption zones with different 
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topographies. The system was powered by a pumping system (PUMP) connected to a res-
ervoir, consisting of a three-phase 3 HP induction motor, a Schneider pump model BC-21R 
and a KSB booster pump (BST) model Megaline to improve the hydraulic head in the high 
zone. The pumping systems were driven by two independent variable frequency drives 
(VFDs). In this way, it was possible to control the rotation speed of the pumps separately.

Two control valves (CV2 and CV3) were used to vary the demands at the consumption 
points of the experimental setup. These valves were located in the discharge branches of 
the Low Zone (LZ) and High Zone (HZ), respectively. Upstream of the LZ, a control valve 
(CV1) was installed, which acted as a pressure-reducing valve.

LabVIEW, a graphical programming language to accommodate the SCADA system in 
a microcomputer, was used as data acquisition and instrument control software. It allowed 
an operator to change setpoints on the controller, open/close valves, monitor alarms and 
to gather instrument information from a local process to a widely distributed process. The 
system was constructed in a microcomputer with two data acquisition modules (USB-6221 
and USB-6229) manufactured by National Instruments. The PC used in the experiments 
had an Intel Core i7 with 8 GB of main memory.

The data acquisition network was designed to characterize the system performance. 
For this purpose, a network of sensors was set up to monitor the most relevant parameters 
of the system. These sensors measured pressure (PT1 and PT2), flow (FT1 and FT2) and 
power consumption. The pressure sensors were Acros TP-ST18 with accuracy ± 0.25% FS. 
The flow meters were Incontrol, model VMS 038 6000 with accuracy ± 0.5% FS.

3  Artificial Neural Network Controller

The developed controller, which uses an ANN with backpropagation learning, was applied 
to the experimental setup to control the pressure at the measurement points PT1 and PT2 
and to minimize the SEC of the pumps.

Fig. 1  Schematic diagram of experimental setup
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The inclusion of this indicator in the controller algorithm is an innovation in the formula-
tion of control systems for WDSs. An ANN with backpropagation learning is the most com-
mon one used in dynamic systems for optimization, identification and control of processes.

ANNs are collections of small, individually interconnected processing units. Information 
is passed between these units along interconnections; the incoming connection has two values 
associated with it, an input value and a weight. The node receives weighted activation of other 
nodes through its incoming connections. First, these are added up (summation). The result is 
then passed through an activation function and transferred to the next node. A neural network 
consists of many nodes joined together, usually organized in groups called layers. A typical 
network consists of a sequence of layers with full or random connections between successive 
layers (typically two layers with connections to the outside world): an input buffer where data 
is presented to the network, and an output buffer that holds the response of the network to a 
given input pattern. Layers distinct from the input and output buffers are called hidden layers, 
and in principle, there could be more than one hidden layer. In such a system, excitation is 
applied to the input layer of the network (Hasan et al. 2006).

The proposed model was an ANN composed of an input layer, a hidden layer and the output 
layer. Recently, researchers showed that a three-layered ANN using the back-propagation algo-
rithm can approximate any well-behaved nonlinear function to any desired degree of accuracy 
(Funahashi 1989). The input layer had seven neurons: pressure in the LZ (PT1), flow pumped 
into LZ (FT1), pressure in the HZ (PT2), flow pumped into the HZ (FT2), delay of the control 
signal of the PUMP frequency. (PUMP(t-1)), delay of the control signal of the CV1  (CV1(t-1)) 
and delay of the control signal of the BST frequency  (BST(t-1)). The activation function in this 
layer was linear. The middle layer had seven neurons (experimentally defined quantity) and, 
due to the nonlinearity of the neurons present in this layer, the activation function used was the 
hyperbolic tangent function. Figure 2 presents the block diagram of the system.

To minimize the SEC and simultaneously control the pressures in the zones, the controller 
acted on the experimental setup actuators, which were the VFD that drove the pumps (PUMP 
and BST) and the control valve (CV1). The ANN also had a neuron in the output layer for 
each actuator. Figure 3 shows the architecture of the ANN controller, where it is possible to 
observe the various elements of real-time operation and training of the network.

The ANN and the design steps of the control system are described as follows. Steps 3 to 
7 refer to the operation phase (forward pass), which covers the steps of calculating the output 
signals of the intermediate-layer neurons and the output signals of the network.

• Step 1: Triggering the experimental setup. The initial value of the activation power-
supply frequency of the pumping systems was set at 0 Hz and the valve closing angle at 
0º (fully open).

• Step 2: Controller activation. The input layer of the ANN received the values of pres-
sure, flow, power supply frequency and valve closing angle in real time.

• Step 3: The input layer signals were calculated by Eqs. (1) and (2). Weighting was per-
formed using the synaptic weight matrix, which received random values between -1 and 
1 in the first iteration. In this step, the activation threshold (or bias) received a random 
value between 0 and 1.

(1)
{
xE1

, xE2
,… , xE7

}
=
{
yE1

, yE2
,… , yE7

}
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where wI77
 represents the matrix of synaptic weights, whose elements denote the value of 

the synaptic weight connecting the neurons of the input layer with the neurons of the inter-
mediate layer; yE is the vector of the output signals from the neurons of the input layer; and 

(2)
�
xI1 , xI2 ,… , xI7

�
=
�
yE1

, yE2
,… , yE7

�
⋅

⎡
⎢⎢⎢⎣

wI11
wI12

⋯ wI17

wI21
⋱ ⋯ ⋮

⋮ ⋮ ⋱ ⋮

wI71
⋯ ⋯ wI77

⎤
⎥⎥⎥⎦
−
�
�1, �2,… , �7

�
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Fig. 2  Block diagram of the system
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�I7 is the vector of the activation threshold (or bias) present in the neurons of the intermedi-
ate layer.

• Step 4: The output signals from neurons that belong to the middle layer were calcu-
lated by Eq. (3).

where yIk is the activation function of neurons belonging to the middle layer of the ANN. 
For this work, the activation function was the hyperbolic tangent with an interval between 
the values -1 and 1, and �Ik

 is the parameter of the activation function.

• Step 5: The signals coming out of the middle layer (input signals from the neurons  
in the output layer, xSl ) were weighted by the synaptic weight matrix WS (Eq. (4)).

• Step 6: The weighted signals entered the output layer and passed through a linear 
activation function, in which the three output signals from that layer (control sig-
nals) were calculated. In this case, wSmn

 is the weight matrix responsible for weight-
ing the values between the neurons of the middle layer and those of the output layer, 
and yIk is the output vector of the neurons of the middle layer. The activation func-
tion used in calculating the network output was linear and, therefore, the output sig-
nals were determined by Eq. (5).

• Step 7: At the end of this iteration, the ux control signals were sent to the actuators 
(VFD and CV1). Thus, the controller responded with a yR signal that represented the 
actual system response to the control signals. After obtaining yR , the error (E) was  
calculated using Eq. (6):

The training (backward pass) was carried out in unsupervised learning. In this 
stage, the error backpropagation algorithm, together with the gradient descent method, 
adjusted the synaptic weights (Eq. (7)), the activation threshold value (bias) (Eq. (8)) 
and the function parameter activation code �I (Eq. (9)). The adjustment of the weights 
located between the input and intermediate layers occurred from the application of 
Eq. (10).

(3)yIk = f
(
xIk

)
=

1 − e
−�Ik

xIk

1 + e
−�Ik

xIk

(4)xSl =
�
yI1 , yI2 ,… , yI7

�
⋅

⎡
⎢⎢⎢⎣

wS11
wS12

⋯ wS17

wS21
⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋮
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⋯ ⋯ wS77

⎤⎥⎥⎥⎦

(5)ySl = xSl =
�
yI1 , yI2 , yI3

�
⋅

⎡
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⋯ wS13
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⋯ ⋯ wS73

⎤⎥⎥⎥⎦

(6)E = yref − yR
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where � is the coefficient that represents the network learning rate and ES is the error, which 
is equal to the difference generated between the network’s output value and the setpoint.

4  Analysis Procedure

To validate the ANN controller, the following parameters were calculated: maximum 
overshoot, settling time and steady-state error. The overshoot is defined as the difference 
between the maximum value of the response curve and the steady-state error. The time 
required for the response curve to reach values within an error range (usually 2–5%) in 
relation to the steady-state value is defined as settling time. The steady-state error is the dif-
ference between the steady-state output and the setpoint.

The system energy performance was analyzed based on the instantaneous measurements 
of flow and power consumption of its components. The electric consumption parameter 
was calculated by integrating the power consumption W(t) of different components in the 
Δt interval (Eq. (11)) numerically. This quantity was calculated for each of the pumping 
systems with separate power consumption readings. There were two power consumption 
readings in the experimental setup. The consumption of the PUMP, while the second was 
the consumption of the BST. For each component, this quantity represented the energy 
consumed in the Δt interval.

The specific energy consumption (SEC) was defined as the ratio between the power con-
sumption W(t) and the total flow pumped in the Δt interval starting at  T0 time (Eq. (12)).
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+ �

⎛
⎜⎜⎜⎝

⎧
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⋮
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⎫
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⋅
�
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�⎞⎟⎟⎟⎠

(8)�I =
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5  Experimental Results

The performance of the ANN controller was assessed under three operating conditions: 
change in water demand (Experiment 1), disturbances in the plant (Experiment 2) and 
changes in pressure setpoints (Experiment 3).

5.1  Experiment 1

Experiment 1 was intended to evaluate the performance of the ANN controller. The tests 
started with the condition of the maximum water demand and the closing angle of CV2 and 
CV3 at 40º. Subsequently, this angle increased by 2º every 30 s until reaching 60º, which 
corresponded to the minimum demand. Experiment 1 was divided into the three tests:

• Experiment 1a: The purpose of this test was to verify the behavior of the experimen-
tal setup without the controller acting, thus emulating what happens in a real WDS 
without pressure control. Then, the pumping systems were activated at the nominal fre-
quency (60 Hz) and the CV1 was kept fully open. The results are shown in Fig. 4a.

• Experiment 1b: The test was carried out under the same operating conditions as 
Experiment 1a (variation in water demand), but with the ANN controller acting on 
the system. The actuators (PUMP, BST and CV1) were activated by the controller to 
maintain the pressure in the Low Zone (LZ) at 10 m and the High Zone (HZ) at 15 m. 
The results are shown in Fig. 4b. At 21 s, there was a maximum overshoot of 34.5% 
(13.4 m) in the LZ and 2.5% (15.4 m) in the HZ. The settling time for the two con-

(12)SEC =
W

Vol

Fig. 4  Pressure behaviors at the measuring points
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sumption zones in this initial phase was approximately 17 s. The steady-state error was 
within a range of 0.05 m for the HZ, and 0.03 m for the LZ.

• Experiment 1c: This experiment followed the same methodology described in Experi-
ment 1b. However, in addition to controlling the pressure in the two zones, the controller 
was used to minimize the SEC, whose setpoint was 0 (zero) kWh/m3. In addition to con-
trolling the pressure, the main purpose of this experiment was to increase the system’s 
energy efficiency. Pressure behaviors at the measuring points are shown in Fig. 4c.

The behavior of the control variables of the system is shown in Fig. 5a. At the begin-
ning controller’s performance, the PUMP frequency reached a level close to the nominal 
and the BST reached 39 Hz. The rapid increase in frequency occurred because the con-
troller was acting to reduce the large difference between the pressure values and the set-
points in the two zones. When the pressure got closer to the reference value, the change 
in frequencies decreased. As expected, the high frequency values corresponded to the 
intervals at which the water demand was maximum, while the lowest values represented 
periods when the demand was minimal. The performance of the controller caused CV1 
to reach a 21.6º closing angle and remain so throughout the test.

Figure 5b shows the behavior of the control variables in Experiment 1c. The PUMP 
frequency reached 53 Hz, while for the BST, this value was 32 Hz. The actuation of the 
controller on the valve caused its closing angle to vary from 0º to 23.6º. It is worth men-
tioning that CV1 caused a loss of pressure that affected the pressure reduction downstream 
of the installation (LZ) and created an increase in pressure upstream, benefiting the HZ.

In Experiment 1b, when the ANN controller was activated, the PT1 pressure reached 
the setpoint in the LZ in 22  s. The overshoot calculated was 75.3% (17.5  m) and the 
average steady-state error was 0.29 m. Due to the condition of minimization of the SEC 
(Experiment 1c), the pressure in this zone did not reach the setpoint in the HZ, account-
ing for a steady-state error of approximately 0.03 m. The error is acceptable, as there 
was a significant increase in the energy efficiency of the pumping systems.

5.2  Experiment 2

Experiment 2 was intended to analyze the performance of the ANN controller when sub-
jected to disturbances in the plant. After the system stabilized, disturbances were imposed 

Fig. 5  Behavior of the control variables
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on both branches by momentarily closing the valves. In all tests, the measurement points 
were 10 m (LZ) and 15 m (HZ).

• Experiment 2a: The tests were carried out for the condition of minimum water 
demand in the consumption zones, and the closing angle of CV2 and CV3 remained 
at 60°. Figure 6a shows the pressure behaviors at the measuring points. As the ANN 
had its weights previously calculated, there was a decrease in the settling time and no 
overshoot. The graph shows that the pressures reached the setpoint in a few seconds. 
The steady-state error for the two consumption regions remained within a range of 
0.2 m.

• Experiment 2b: The experimental setup was subjected to the same disturbances as 
Experiment 2a, but with the maximum water demand in the consumption zones. The 
pressure behaviors of the measuring points are presented in Fig. 6b. As in Experiment 
2a, the performance of the ANN controller was satisfactory and the pressures equaled 
the setpoints in the two zones. The average error was 0.2 m.

5.3  Experiment 3

The tests of Experiment 3 allowed us to verify the accuracy of the ANN controller when 
subjected to changes in the setpoint. Initially, the reference values were 10 m and 15 m 
for the LZ and HZ, respectively. Then, different setpoint values were imposed on the 
system for the measurement points. The results are shown in Fig. 7. The ANN controller 
proved to be robust, as the steady-state error did not exceed 0.2 m. Additionally, when 
changing the setpoint of one consumption zone, there were disturbances in the other sup-
plied zone.

Figure 8 shows the behavior of the control variables (PUMP frequency, BST frequency 
and CV1 angle), in addition to the closing angle of CV2 and CV3. At 4 s, when the con-
troller was activated, the PUMP and the BST frequencies went to 52 Hz and 32 Hz, respec-
tively, intended to quickly reduce the difference between the measured pressures and the 
setpoints. Whenever the reference pressure was changed in the consumption zones, an 
adjustment was noticed in the three control variables.

Fig. 6  Pressure behaviors at the measuring points with the controller acting

a) Experiment 2a  b) Experiment 2b  

.0

5.0

10.0

15.0

20.0

.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0P
re

ss
u
re

 a
t 

m
ea

su
ri

n
g

 p
o

in
ts

 (
m

)

Time (s)

PT1 PT2 Setpoint

.0

5.0

10.0

15.0

20.0

.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0P
re

ss
u
re

 a
t 

m
ea

su
ri

n
g

 p
o

in
ts

 (
m

)

Time (s)

PT1 PT2 Setpoint



 L. R. Salvino et al.

1 3

6  Discussions

The results demonstrate the potential for the controller’s application to increase systems’ 
hydraulic and energy efficiency. Although the system adopted for the experimental tests is 
relatively simple compared to complex WDSs, the controller is expected to adapt well to 
real operating conditions.

As expected, Experiment 1 showed that the controller with the SEC showed greater 
energy efficiency than the others. For the maximum demand (0–50  s), this provided a 
reduction in specific consumption of 17.8% and 2.5% in relation to Experiments 1a and 
1b, respectively. For minimum water demand (345–400  s), the SEC savings were 2.5% 
and 15.1%. The time required to converge to the setpoint was not affected by the inclusion 
of SEC in the controller algorithm, the value remained below 20 s in all tests. This dem-
onstrates the potential for application in real WDS, where changes in water demand are 
generally much slower.

The controller performance analysis included the evaluation of the system’s accuracy 
in converging to the setpoints. Experiment 2 confirmed that the controller performed well 
when subjected to disturbances in the plant. These presented an average error of 0.2 m, 

Fig. 7  Pressure behaviors at 
the measuring points with the 
controller acting for energy 
efficiency – Experiment 3

Fig. 8  Behavior of the control variables – Experiment 3
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compatible with values described in other works. Barros Filho et  al. (2018) and Moura 
et  al. (2018) obtained similar absolute errors (measured value versus setpoint). The first 
work obtained a maximum error of 2.9% (0.45  m), while the second, for a setpoint of 
12.5 m, obtained a maximum error of 1.52% (0.19 m).

The results of Experiment 3 (Fig. 7) show that the plant is coupled, that is, that adjust-
ments made in one of the zones interfere in the other and vice versa. This fact demon-
strates the complexity of the simultaneous pressure control of the measurement points in 
the experimental setup and reinforces the need to develop more robust control systems. The 
controller maintained good performance when subjected to different setpoints, which con-
firms the robustness and effectiveness of the proposed control approach.

7  Conclusions

The main objective of this work was to design an ANN with backpropagation learning to 
autonomously control the pressure in WDSs while increasing the energy efficiency of the 
pumping systems. Once the setpoints of the pressure measurement points were registered, 
the ANN controller adjusted the power supply frequency of the motors and the control 
valves of the system, without the need for manual commands from the operators. In addi-
tion, it is noteworthy that the network was applied directly, that is, all training was in real 
time.

The pressure control and energy efficiency increase in the experimental configuration 
was applied by adjusting the opening/closure of a valve and the rotation speed of a con-
ventional pump and a booster pump in real time. To assess the performance of the ANN, it 
was applied in three experiments. Effective pressure control on the experimental setup was 
observed in all tests. The results confirm the robustness and effectiveness of the proposed 
control approach. The controller had quick responses, with a settling time of less than 22 s, 
and the tests did not show an overshoot after ANN training. Errors remained in a range of 
less than 0.3 m.

Traditionally, the development of controllers for WDSs is mainly intended to regulate 
pressure at the measurement points, the distributed flow or the control of tank filling. In 
this work, including SEC in the controller allowed the pumping system to improve its 
energy efficiency. The experimental results demonstrated a reduction in specific consump-
tion between 15.1% and 17.8% compared with the uncontrolled system, and an economy 
that varied from 2.5% to 8.1% compared with the performance of the ANN based only on 
pressure control.

A gap in this work and in the literature is that researchers need to clarify which of the 
available controllers (fuzzy, neuro-fuzzy etc.) has the best performance. Furthermore, the 
number of works reporting about experimental results in complex WDSs is very small.

Finally, in line with other recent research applying neural controllers, it is hoped that 
the developed controller can be applied to real WDSs, mainly due to the ANN’s real-time 
learning ability. The application of the controller can make it possible to reduce water 
losses in large systems by controlling pressure in addition to increasing energy efficiency.
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