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Abstract: Water supply systems are constantly improving their operation through energy efficiency
actions that involve the use of advanced measurement, control, and automation techniques. The
maintenance and reliability of water distribution is directly associated with hydraulic pressure
control. The main challenges encountered in hydraulic pressure control are associated with random
changes in the supply plant and the presence of noise and outliers in the sensor measurements. These
undesired characteristics cause inefficiency and instability in the control system of the pumping
stations. In this scenario, this paper proposes an indirect adaptive control methodology by reference
model for modeling and controlling water supply systems. The criterion adopted in the parametric
estimation mechanism and the controller adaptation is the Maximum Correntropy. Experimental
results obtained with an experimental bench plant showed that the maximum tracking error was 15%
during demand variation, percentage overshoot less than 5%, and steady-state error less than 2%,
and the control system became robust to noise and outliers. In comparison to the Mean Squared Error
criterion, when noise and outliers influence the sensor signal, the proposed methodology stands out,
reducing the mean error and the standard deviation, in the worst-case scenario, by more than 1500%.
The proposed methodology, therefore, allows for increased reliability and efficiency of an advanced
pump control system, avoiding downtime and equipment damage.

Keywords: correntropy; adaptive system; water pumping

1. Introduction

The economy, reliability, and stability of water supply systems have a direct impact
on the various sectors of society, and to improve these characteristics, the utility compa-
nies continuously invest in infrastructure, monitoring, and new information technology
instruments, transforming the water supply networks into an intelligent system [1].

In the modern water supply system, various techniques have been used to monitor
and control the hydraulic pressure, trying to increase its reliability and continuity. Studies
such as those developed by [2–4] have made comparisons between Proportional Integral
Derivative (PID) control and PID-Fuzzy controllers. The results showed that Fuzzy control
is more robust to variations in physical plant characteristics and noise in signals mea-
surement, unlike PID control, whose gains are determined to meet a desired dynamic
response.

In [5], an intelligent control system based on an Artificial Neural Network (ANN)
with multilayer feedforward architecture was proposed for the operation of a water supply
system with parallel pumps and with electric motors driven by a frequency converter. The
settling time in all experiments was less than 30 Therefore, and the maximum relative
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steady-state error was 2.9%. In addition, the generalization capacity associated with the
ANN algorithm allowed for an increase in the hydraulic and energy efficiency of the
operations, a reduction in water losses, and an increase in the useful life of the equipment.

In [6], a Reference Model Adaptive Control (MRAC) system was carried out for a
conical water tank system, showing its robustness and high performance to randomness,
i.e., adapting the model parameters to the parametric variations of the system, such as
roughness, temperature, water density, and others. An adaptive PID control by gain scaling
was developed in [7], applied to pressure regulating valves in water distribution networks.
In [8], a self-adjusting Adaptive Controller with Generalized Minimum Variance (GMV)
was developed for the modeling and real-time control of a water pumping system. In
this strategy, control valves were used, and a frequency converter was used to drive a
motor-pump set simultaneously. In [9], a self-adjusting Adaptive Controller was proposed
to manage, throughout the day, the hydraulic pressure at the nodes of a water distribution
network by managing the water level in a storage tank. As a result, water supply was
provided to different topographical zones of a city to meet the required demands.

Substantially, good quality in the estimation of measurements with low associated
uncertainty is an important aspect to ensure the stability of these control systems. However,
the measured values can be affected by other factors, such as communication errors, incor-
rect operations of transducers, and acquisition equipment failures. These atypical values
are called outliers. Therefore, for the adaptive control system to perform appropriately,
suitable integrity of the data is required; otherwise, the results may lead to instability,
damaging the hydraulic structure [10,11].

Usually, in adaptive control systems, the Mean Squared Error (MSE) is used as the
error minimization criterion to determine the model parameters. However, to use the
MSE, one must consider that there is a Gaussian probability density function (PDF) of the
error, with zero mean and known standard deviation, and that there is a linear correlation
between the concerning variables [12,13]. However, in real engineering applications, the
PDF of the error is unknown, so the MSE as a minimization criterion for the determination
of the model parameters does not transfer all information contained in the dataset which
are mainly the higher-order statistical moments (Skewness and Kurtosis) [14,15].

In this work, we propose an innovative methodology for adaptive pressure control in
a hydraulic system, based on Indirect Model Reference Adaptive Control with Maximum
Correntropy Criterion (IMRAC-MCC), to improve the operational performance of water
pumping systems. The main contribution is the development of an adaptive control algo-
rithm capable of naturally rejecting the influence of outliers, which uses fewer parameters
for tuning than the MSE approach.

From the development of this work, we can highlight the main contributions:

(i) The development of an adaptive control algorithm capable of naturally rejecting the
influence of outliers;

(ii) Control algorithm based on MCC with fewer parameters to be used for tuning than
mean squared error (MSE);

(iii) Increased reliability in pumping systems, avoiding measurement problems or oper-
ational failures that cause instability in the pumping system and, consequently, the
assignment of this service.

For the validation and comparison of the experimental results between the MSE and
MCC minimization criteria, a fully automated experimental water pumping system was
used, located in the Laboratory of Energy Efficiency and Hydraulics in Sanitation (LENHS)
at the Federal University of Paraiba (UFPB).

2. Related Works

With population growth in large urban centers caused by verticalization and with the
rapid increase of inner-city apartment high-rise buildings, there is also a need for more
efficient techniques to provide water supply system reliability. Given this scenario, water
and sanitation companies are investing in infrastructure, micro and macro measurement,
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and advanced control systems. In the literature review, works directly related to this
problem were found and will be briefly addressed below.

An Interactive Learning Control (ILC) controller was developed in [16] for pressure
control in a water supply system. This proposed control provides pressure set-points for all
inputs to the network instead of the flow rate, reducing the number of flow meters, which
are typically more costly. In this way, the design of the controller does not depend on a
model, but on the periodicity of the signal to be controlled.

In [17], was investigated the stability and robustness of Real-Time Control (RTC)
algorithms based on models systems dynamic linear water supply around the operating
point. The analysis concludes that the instability may be caused by multiple resonance
conditions and the different system gains. Moreover, a low-pass filter and a Smith predictor
(predictive controller) were used to improve control robustness.

In [9], a self-adjusting Adaptive Controller was proposed to manage, throughout the
day, the hydraulic pressure at the nodes of a water distribution network by controlling the
level in a water tank. The aim was to provide an equal supply for the demand required
in different areas of a city. It was verified, from the results of three consecutive days of
operation, that the linear model used performed the pressure estimation with an error
smaller than 5% for each node of the network.

Refs. [18,19] presented a Predictive Model Controller for a large water distribution
network. The proposed algorithms were used to optimize the water level in the reservoirs
and the node pressure at each point. The control behaved as designed, ensuring the stability
of the node pressure.

Proportional Integral (PI) control development was showed in [20], whose objective
was to increase the energy efficiency and reliability of water pumping units with cascade
pumps. The dynamic error for two cascade pumps did not exceed 3% and also reduced the
energy losses per one-day cycle by 30%.

A non-convex Neuro-Linguistic Programming (NLP) was used in [21] to carry out
mono-objective and multi-objective optimization of the control curves for the variable
speed pumps and pressure reducing valves. The target function considered the mean zonal
pressure, the energy consumption of the water pump, and the cost of water treatment.
The controller proved to be robust to the uncertainty of the hydraulic system and the
demand changes.

On the other hand, in [2] fuzzy logic was used to adjust a pressure control system and
an experimental water supply network. During the experiments, three pumping system
operation configurations were setting: series, parallel and single pump. The results showed
that all configurations of the pressure control system were able to maintain stability, but of
the three, the parallel operation presented the highest energy efficiency.

The controllers cited above, despite presenting satisfactory results, suffer when the
measured signal is influenced by outliers. To circumvent this, Reference [22] proposes
adaptive inverse control, based on the Maximum Correntropy Criterion (MCC) algorithm,
to circumvent the limitations found in the least squares method (LMS), which works
well only for linear and Gaussian systems. The MCC algorithm aims to maximize the
correntropy between the model output and the desired response. Since correntropy is
a non-linear similarity measure that contains higher order statistics of the signals and
is insensitive to large discrepancy values, it is therefore possible to achieve desirable
performance in impulsive noise environments [23,24]

In [25], a maximum recursive filtered-x correntropy (FxRMC) algorithm is proposed
based on the Maximum Correntropy Criterion (MCC) to reduce the effect of outliers. The
proposed FxRMC algorithm requires no previous information of the noise characteristics
and outperforms the filtered x-filtered least mean square (FxLMS) algorithm for impulsive
noise. Meanwhile, in order to adjust the kernel size of the online FxRMC algorithm, a
recursive approach was adopted by taking into account the previous estimates of error
signals over a sliding window.
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According to the literature review, several current control and system identification
strategies are currently being developed. However, these techniques are mainly based on
building the adaptive models using the MSE criterion, that is, considering that the PDF of
the error between the estimated value and the measured one is of Gaussian type and is
correlated. To solve these limitations, it is necessary to conduct research that allows the
development of adaptive systems capable of maximizing the extraction of information
from the error PDF, considering that the system, in general, presents non-linear and time-
varying characteristics.

3. Measuring Setup and Data Acquisition

The main function of water supply systems is to provide the population with drinking
water in appropriate quantity and pressure. The efficient management and operation
of this type of system involves the application of control and automation strategies. In
this work, an experimental system was used, as illustrated in Figure 1, which emulates
a water supply system with variable demand. This experimental system is located in
the Laboratory of Energy Efficiency and Hydraulics in Sanitation (LENHS) at the Federal
University of Paraíba (UFPB) in João Pessoa, Brazil.

Figure 1. Photograph of the experimental system.

Figure 2 shows the schematic diagram of the experimental system, in which water
from the reservoir is pumped by a centrifugal pump (three-phase 220/380 V 3 hp) through
Polyvinyl chloride (PVC) pipes and connections. The pump supplies the liquid with
energy in the form of pressure and flow, which are measured using pressure (PT) and flow
(FT) transducers, whose maximum measurement limits are 42.21 mH2O and 11.34 L/s,
respectively.

The pump’s rotation speed is controlled by a frequency converter. In addition, at
the outlet of the system is an automated proportional valve (VRP CV-1), which serves to
emulate the variable water demand by regulating the cross-sectional area through which
flows through the pipe.

The electrical signals from the sensors in the form of a current (4–20 mA) are converted
to voltage (0–10 V) by an electrical conditioning board. Afterward, the voltage levels are
converted into a digital signal by a data acquisition system (DAQ) model NI-USB 6229,
with a sampling frequency set at 10 Samples/s.

Finally, the digital signal was transmitting via USB to a personal computer (PC) for
storage and digital processing. Next, application of the control algorithm was carried out,
and then, an actuation signal was generated and sent from the PC to the frequency inverter
via DAQ.
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Figure 2. Schematic of the experimental system.

4. Background Definitions

In this section, we showed the main concepts of the indirect adaptive control model
by the reference model and the correntropy theory as error minimization criteria for the
estimation of the adaptive system parameters.

4.1. Adaptive Controller

Generally, industrial processes have aspects of nonlinearities, parameter changes,
disturbances, impulsive noise, and the influence of outliers in the sensor’s signal mea-
surements. These characteristics indicate the need to adopt more robust controllers, like
adaptive controllers, given the criticality and the search for maximum efficiency in indus-
trial processes [26].

The objective of adaptive control is to maintain the system control’s performance, even
in the influence of uncertainties or parametric variations in the plant. In general, there are
two types of methods for building adaptive controllers: direct and indirect. In the direct
method, the controller gains are estimated directly from a pre-established reference model,
that is, it is not necessary to perform the identification of the plant parameters [27].

In the indirect method, the plant model is determined as a function of the unknown
plant parameter vector, requiring a real-time estimator, using the plant’s input and output
signals. Therefore, the generated model is treated as true and its parameters are used for
the calculation of the controller variables [27].

For the direct method, most works use the Adaptive Reference Model Controller
(MRAC) topology. In this controller, the plant output signal is compared with the reference
model output signal, generating a tracking error. The controller parameters are adjusted,
using a cost function, based on this error, making the plant output signal converge with
that of the reference model. The matching condition is reached when the tracking error is
zero [28].

Typically, the parameters of adaptive systems use the MSE as a cost function to
compose the performance criteria, which evaluates the error between the actual measured
value and the values of the estimated plant and reference model, as shown in the diagram
of Figure 3. In this Figure, u is the controller signal, yp the plant signal, ye the estimated
plant model signal, and ym the reference model signal.
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Figure 3. Indirect adaptive control by reference model.

However, the satisfactory performance of the MSE criterion is based on the con-
sideration that probabilistic characteristics of the error, i.e., that the probability density
function is Gaussian and has zero mean. Consequently, when this characteristic is not
observed, which happens especially when the measured signal is subjected to outliers,
this performance criterion distorts the model, decreasing the reliability of system and the
adaptation mechanism.

Therefore, it is relevant to study another performance criterion that can naturally reject
outliers without the need for pre-processing and maintain the performance of the control
system. Thus, in this work, it is proposed to apply the criterion of Maximum Correntropy,
whose definitions will be briefly discussed in the next subsection.

4.2. Correntropy Theory

Improved strategies should be used for the optimal development of adaptive con-
trollers, whose parameters are determined using mathematical algorithms capable of
extracting the maximum possible information contained in the error PDF. For this purpose,
the error PDF model, in general, can be characterized by higher-order statistical moments
such as Skewness and Kurtosis. Therefore, nonlinear systems can utilize all information
contained in the process measurements synergistically, increasing the robustness and
performance of the controllers [26].

To satisfy these requirements, in this work, correntropy was used as the minimization
criterion, which can be conceptualized as the generalization of the correlation. This is
a metric from Information Theory, which measures the generalized similarity between
two random variables X and Y, and its mathematical formula is defined in the following
expression [12]:

υ(X, Y) = EXY[κ(X−Y)] (1)

where E[.] is the statistic expectation operator, and κ is a gaussian kernel. In this paper, the
Gaussian kernel will be adopted, described as

κ(x− xk) =
1

σ
√

2π
exp

(
− (x− xk)

2

2σ2

)
(2)

where x is the estimated value, xk are the k values measured around x, and σ is the standard
deviation, as described in Equation (2).
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In practice, one does not have knowledge of the probability density function, only of
a finite number of data {(xi, yi)i=1

N}. In this situation, one strategy that can be used to
estimate the unknown values is that of the Parzen Windows [12], the mathematical form of
which is described by

υσ,N(X, Y) =
1
N

N

∑
i=1

κ(xi − yi) (3)

In general, when disregarding the influence of the σ parameter and adopting the Gaus-
sian kernel the correntropy is symmetric, positive, bounded, and results in the weighted
sum of all even moments of the random variable Y-X [12].

In addition, correntropy is related to a distance measure, called the Correntropy
Induced Metric (CIM) between two arbitrary scalar random variables X and Y, as shown
in Equation (4), satisfying all the properties of a metric [12].

CIM(X, Y) = (υσ,N(0, 0)− υσ,N(X, Y))1/2 (4)

CIM divides the space into three different regions: when the error is close to zero,
CIM is equivalent to a L2 norm (Euclidean, similar to the MSE criterion); when the error
increases, CIM becomes similar to a L1 norm (transient, sum of coordinate differences);
when the error is very large, CIM becomes a L0 norm, the metric saturates and becomes
very insensitive to large errors, characterizing a rejection region [29].

This characteristic shows the importance of defining the width of the Gaussian kernel,
i.e., the smaller this width, the smaller the Euclidean region. On the other hand, increasing
the kernel size will also increase the Euclidean region, making the metric behave like the
MSE criterion.

A large number of adaptive algorithms use the least squares algorithm (LMS). LMS
is a stochastic gradient algorithm on the least mean square error (MSE) criterion, which
works well for linear and Gaussian systems. However, its performance will become poor
when the signals are not Gaussian, especially when the systems are disturbed by impulsive
noise. On the other hand, the MCC excels the MSE criterion because it is a non-linear
similarity measure that contains higher order statistics of the signals and is insensitive to
large discrepancy values [22].

5. Methodology

The proposed methodology is based on the Maximum Correntropy Criterion with
Gaussian kernel as mechanisms for adaptation and estimation of an Indirect Adaptive
Control by Reference Model, which we will call IMRAC-PID-MCC and is described in the
following.

5.1. Controller Structure

Figure 4 shows the block diagram of the proposed control system, consisting of
6 subsystems:

• Reference Model: transfer function with the behavior that will be imposed on the
controlled system (Hp);

• Controller: proportional-Integral-Derivative with variable earnings (C);
• Plant: real system to be controlled (P);
• Estimated Plant: the Identified Function of the System (Pe);
• Parametric estimation mechanism: implements Estimation of plant parameters (θ);
• Adaptation mechanism of the controller: update controller’s gains (θc);

In this control scheme, the plant model P(Θ∗) is calculated as a function of the
unknown parameter vector Θ∗. A real-time estimator generates an estimate θ(t) of θ∗

at each instant time t, processing the input u and the output yp. The estimation of the
parameters θ(t) will determine an estimated model, characterized by P∗(θ(t)) which, for
the purposes of the controller design, is treated as the true model of the plant at time t and
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is used to calculate the controller parameters or gain vector θc(t) through the algebraic
equation θc(t) = F(θc(t)) [27].

Parametric estimation and adaptation mechanisms can assume different optimization
criterion, such as MSE or MCC. In this work, we seek to contrast these two criteria in
both mechanisms.

Figure 4. IMRAC-PID block diagram.

5.2. Controller System

For the mathematical development of the proposed control scheme, a first-order plant,
Equation (5), will be considered, approximates many water pumping systems, the focus of
this paper.

Hp(s) =
Yp(s)
U(s)

=
bp

s + ap
(5)

where Hp(s) is the plant transfer function, Yp(s) is the plant output, U(s) is the plant input,
bp and ap are the plant parameters.

The definition of the order of the reference model depends on the order obtained
from the closed-loop transfer function of the plant with the controller, which, in this case,
yields a second order system. The transfer function of the reference model defines the
characteristics of the response that the plant must follow, and mits transfer function Hm(s)
is given by

Hm(s) =
Ym(s)
R(s)

=
bm

s2 + am1s + am2
(6)

where R(s) is the reference, Ym(s) is the output of the reference model.
It is important to observe that the order of the plant, in many cases, is unknown and

can be obtained through a test or empirically defined by the designer and influences the
performance of the controller, as the controller parameters must be adjusted for the plant
to converge to the reference model.



Sensors 2021, 21, 5156 9 of 22

Finally, a Proportional Integral Derivative (PID) controller is adopted, whose parame-
ters to be adapted are Kp, Ki and Kd, respectively, with transfer function Hc(s) given by

Hc(s) = Kp +
Ki
s
+ sKd (7)

The closed loop equation is then given by

yp(t) =

(
d(.)
dt

)2
(Kdbp) +

(
d(.)
dt

)
(Kpbp) + Kibp(

d(.)
dt

)2
(1 + Kdbp) +

(
d(.)
dt

)
(ap + Kpbp) + Kibp

r(t) (8)

To approximate the closed-loop output signal of the plant (yp) to the reference model
output signal (ym), it is necessary to minimize the tracking error (ε = yp − ym). This error
will be minimized by maximizing the similarity between the plant signal and the reference
model using the Maximum Correntropy criterion, whose cost function is given by:

JMCC =
1

σN
√

2π

N

∑
n=1

exp

(
−
(ypn − ymn)

2

2σ2

)
(9)

where N is the observation window, that is, the number of measured values, and σ is the
width of the Gaussian kernel (standard deviation).

To maximize the value of JMCC, it is reasonable to modify the parameters Kp, Ki, and
Kd toward their ascending gradient. Replacing (8) in (9) and knowing that the partial
derivative of ym is equal to zero because this does not depend on the parameters to be
adapted, D = d(.)/dt and considering N = 1, one obtains

dKp

dt
= Γ(t)


(

bp
1+Kbbp

)
D

D2 + D
(

ap+Kpbp
1+Kdbp

)
+
(

Kibp
1+Kdbp

)
e(t) (10)

dKi
dt

= Γ(t)


(

bp
1+Kbbp

)
D2 + D

(
ap+Kpbp
1+Kdbp

)
+
(

Kibp
1+Kdbp

)
e(t) (11)

dKd
dt

= Γ(t)


(

bp
1+Kbbp

)
D2

D2 + D
(

ap+Kpbp
1+Kdbp

)
+
(

Kibp
1+Kdbp

)
e(t) (12)

where

Γ(t) = − 1
σ3
√

2π
exp

(
− ε(t)2

2σ2

)
ε(t) (13)

Equation (13) provides the controller adaptation mechanism with a natural rejection
of spurious values or outliers due to the quadratic exponential decrease of the tracking
error, ε(t).

5.3. System Identification Mechanism

The adopted model of the estimated plant can be written as is the first order
Autoregressive-Exogenous (ARX) equation, defined by

ye[k] = a1u[k] + a2u[k− 1] + a3ye[k− 1] (14)

where a1, a2, and a3 are the estimated plant parameters; u is the excitation signal; and ye is
the estimated output. The estimated parameters are updated using Equations (15)–(17).

a1[k] = a1[k− 1] + Γe[k]u[k] (15)
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a2[k] = a2[k− 1] + Γe[k]u[k− 1] (16)

a3[k] = a3[k− 1] + Γe[k]ye[k− 1] (17)

where

Γe[k] = −
1

Neσe3
√

2π

Ne

∑
k=1

exp

(
− εe[k]

2

2σe2

)
εe[k] (18)

Applying Tustin’s discretization method to (5), the discrete transfer function of the
plant, with sampling period T, is obtained, as shown in (19). This discretization method
guarantees the stability of the system on every unit circle in the Z plane [30].

yp[k] =
(
(apT)(u[k] + u[k− 1])

2 + Tbp

)
+ yp[k− 1] (19)

Thus, for the estimation error εe to be zero, yp[k] must equal ye[k], that is, (14) and (19)
must be equivalent, obtaining

a1 = a2 =
apT

2 + Tbp
(20)

a3 =
2 + bpT
2 + Tbp

(21)

The estimates of ap and bp, represented by âp and b̂p can be found by solving the
system of equations given by (20) and (21).

âp =
2a1 + a1bpT

T
(22)

b̂p =
2a3 + 2
T − a3T

(23)

Given that, since âp → ap and b̂p → bp, the mathematical formulation for estimating
the controller parameters, presented in Equations (10)–(12), should use the estimated values
of the parameters instead of the real ones. The adaptation mechanism laws of Kp, Ki, and
Kd ensure that the plant response converges asymptotically to the reference model response
for any value of the reference signal, r(t). This statement is plausible, since JMCC(ε) > 0,
J̇MCC < 0, meeting Lyapunov stability criterions.

However, when ||ε|| → ∞, JMCC(ε) → 0, JMCC(ε) → 0, this, according to [16],
determines that ||ε|| = 0 is not an asymptotically globally stable point, because for it to be,
it would require ||ε|| → ∞ and JMCC(ε)→ ∞.

6. Experimental Results

In this section, the performance of the adaptive control algorithm IMRAC-PID-MCC is
evaluated through experimental tests, whose objective is to identify and control the pressure
measured by the PT-3 sensor, as illustrated in Figure 2. To achieve these objectives, the
proposed experimental scenarios are (i) definition of the reference model; (ii) identification
of the system based on MCC; (iii) adaptive PID control based on MCC; (iv) analysis of the
controller performance with changing demand; (v) performance evaluation of the system
in the presence of outliers; and (vi) comparison of the proposed method based on MCC
concerning the classical technique, MSE.

In addition, the speed of rotation of the motor pump was regulated through the use
of a frequency converter. The drive, sensor data acquisition, and implementation of the
adaptive controller took place in a virtual environment developed in LabVIEW software.
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6.1. Model Reference Definitions

To build the reference model, it is first necessary characterize the plant to be controlled.
For this reason, the normalized step response of the plant was obtained, as illustrated in
Figure 5. It can be observed that the system takes 17 s to reach its maximum value, which
corresponds to the acceleration ramp of the frequency inverter, whose inferiorly limits the
characteristics of the reference model.

Given the temporal characteristics obtained in Figure 5 and knowing that this is a
water supply system, it was empirically defined that the reference model should present
the smooth transient regime, to avoid abrupt transients and the hydraulic phenomenon
called water Hammer, which causes an abrupt hydraulic transient and may cause rupture
in the ducts.

Figure 5. Normalized unit step response of the open loop plant.

For the reference model, the second-order transfer function expressed by Equation (24)
was adopted. The values of the damping frequency (wn), equal to 1.41, and damping factor
(ξ), equal to 3.54, were determined empirically on observing the system response. The
purpose of adopting these values is to give the system a smooth transient with the same
settling time as the step response of the real system used in the experiments.

Hm(s) =
Ym(s)
R(s)

=
wn

2

s2 + 2ξwn + wn2 =
2

s2 + 10s + 2
(24)

Figure 6 shows the step response of the reference model.

6.2. System Identification Based on MCC

For the system identification using (22) and (23), the effect of the observation window
and Gaussian kernel width on plant identification performance is evaluated.

The premises considered were Kp, Ki, Kd, a1, a2, and a3 equal to 0.01; Ne equal to 5;
σe equal to 15; sampling period T equal to 0.1 s; and the desired pressure value equal to
10 mH2O. The duration interval of each experiment was 180 s.

There were 20 experiments conducted varying the value of sigma and N. The dy-
namic results are summarized in Table 1, namely, rise time (tr), settling time (ts), peak
time (tp), delay time (td), percentage overshoot (Mp), and percentage mean error (Ē(%)).
Figures 7 and 8 show the controlled pressure temporal response two of those experiments.
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Figure 6. Response to the unit step of the reference model.

Figure 7. Step response to N = 1 and σ = 10.

Figure 8. Step response to N = 20 and σ = 2.
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Table 1. Time response characteristics.

N σ tr (s) ts (s) tp (s) td (s) Mp (%) Ē (%)

1

2 8.6 20.5 9.9 7.7 45.5 7.2

4 10 19.7 11.95 4 47.1 6.2

6 11 24.5 13.7 13 35.0 6.3

8 14.6 21 14.58 16 7.0 6.1

10 28.5 32 - 17 0 5.8

5

2 10.44 33 11.94 11 48.0 6.2

4 12 20 13.67 12 3.2 6.2

6 26 40 - 17 0 6.0

8 39.6 42 - 22 0 5.9

10 49 47.17 - 27.15 0 5.9

10

2 12 27.33 12.63 10.5 15.6 6.0

4 29.18 27.7 - 16.68 0 6.1

6 35.5 40 - 20 0 5.7

8 48.68 50.5 - 27.58 0 6.4

10 64.5 63 - 33.4 0 6.1

20

2 25 25 - 14 0 6.0

4 31.6 32.36 - 19.5 0 5.9

6 40 45 - 27.19 0 6.3

8 60 83.56 - 32 0 6.0

10 76 100 - 39 0 9.0

The values of the system transient response shown in Table 1 are more sensitive to
the width of the Gaussian kernel σ than to the observation window width N, which is due
to the exponential decay present in the cost function. Therefore, the smaller the size of
the windows, the greater the weight assigned to the statistical moments, leading to faster
responses and the emergence of percentage overshoot. On the other hand, increasing values
of N and σ cause an increase in rising time, settling time, peak time, and the mitigation of
the overshoot.

Moreover, there is no significant impact on the error in the permanent regime, due to
the integrative action of the controller. When dealing with a water system, the adoption of
N and σ values that cause the appearance of overshoot and abrupt transient response is
not appropriate, as they can cause damage to the pipes.

To evaluate the performance of the controller, the correntropy percentage was calcu-
lated as

υσ(%) = exp

(
−
(yp − ye)

2

2σ2

)
· 100% (25)

where yp is the plant output signal, ye is the model output signal, and σ is the kernel width
adopted was equal to 1.

This expression allows for a generalized evaluation of the similarity between two
variables, which is not the case for methods using Mean Absolute Percentage Error (MAPE)
and Integral Square Error (ISE), which are restricted to the quadratic error.
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The results obtained in this experiment showed that, in all cases, the value of the
correntropy percentage was over 90%, with the maximum value equal to 95.45%, for N = 1
and σ = 2, which is a consequence of the fast transient response and error in the permanent
regime nearing zero.

6.3. Robust Adaptive Control Based on MCC

In this experiment, the robustness of the controller to the change in the setpoints
values was evaluated. For this, the following was considered: Kp, Ki, Kd, a1, a2, and a3
equal to 0.01; N equal to 10; σ equal to 15; sampling period T equal to 0.1 s; and the desired
values equal to 10, 12, 14, 16, 14, 12, and 10 mH2O. The time interval at each time step was
180 s.

Figure 9 shows the system response for different reference values. It is observed that
due to the inertia of the pumping system and the tuning performed in the controller, the
plant needs 70 s to reach the value of the reference model. This gives the system a soft
response with asymptotic convergence.

Figure 9. System responses for different setpoints.

Figure 10 shows the variation of the controller parameters with time. It can be seen
that, after inertia and initial learning, there is a considerable increase in the convergence
speed of the parameters. However, the derivative gain (Kd) continues to change, main-
taining the system steady and with tracking error close to zero, despite the noises in the
measured signal.

Figure 10. Controller parameters (Experiment II).
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6.4. Variable Demand Pump System

The demand of the pumping system is variable, i.e., there are times with more or less
consumption, consequently having variations in pressure in the network throughout the
day. This way, the control system must work to maintain the system with a steady and
permanent pressure despite these variations.

Figure 11 shows the operation of the controlled plant when there are variations in
water demand, emulated by maneuvering the VRP CV-1 control valve, as shown in Figure 2.
The closing of VRP CV-1 causes an increase of the system pressure, so the adaptation
mechanism operates to update the controller parameters so that the plant signal converges
to the reference model.

On the other hand, the opening of VRP CV-1 causes a reduction in pressure, with the
adaptation mechanism also actuating. In these two situations, during the transition, the
maximum error was 15.8%.

Figure 11. System response under different angles of the VRP CV-1.

Concerning the controller parameters, it is noted that Kp remains constant since the
error during the transient is around zero, but Ki and Kd are changed so that the system,
by changing the setpoint, asymptotically converges to zero error in the steady state, as
illustrated in Figure 12.

Figure 12. Evolution of controller parameters (Experiment III).
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6.5. Performance Evaluation of System with Outliers

In this experiment, the robustness of the controller to outliers are investigated, which
can be frequently associated with communication failures or physical damage to the
transducers. The premises adopted for this experiment are the same as those used in the
previous experiment. The total test time was 4 min, and the outliers started after 2 min of
operation, i.e., when the system was in a permanent regime.

Figures 13 and 14 show 2 results of the controlled pressure out of the 4 experiments
performed for different insertion periods of the outliers: 20, 10, 5 and 1 s. It can be seen
that the control mechanism and parametric estimation act to be effective in maintaining
the system pressure stability without deviating from the value of the reference model. This
shows the tolerance of the MCC to the occurrence of outliers.

Figure 13. System controlled using MCC criterion subjected to outliers every 20 s.

Figure 14. System controlled using MCC criterion subjected to outliers every 1 s.

The quantification of the of parametric tracking and estimation errors in permanent
regime are presented in Tables 2 and 3, respectively. It can be seen, for the tracking error, that
the reduction of the outlier insertion period causes the symmetry of the system, quantified
by Skewness, increasing the histogram flattening and width. However, it maintains the
average error close to zero.
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Table 2. Statistical measurements of the rastreaming error of the controlled system using the
MCC criterion.

Time Interval between Outliers Mean Standard Deviation Skewness Kurtosis

20 s 0.0014 0.33 −20.16 557.10
10 s −0.0020 0.61 −4.41 167.46
5 s 0.0016 0.78 0.49 108.48
1 s 0.0965 1.69 0.17 21.92

The identification process ignores the nonlinearities imposed by the introduction of
outliers. Since the controller signal depends on the identified plant signal, this robust-
ness is essential for the control signal to remain constant, as quantified by the statisti-
cal measurements.

Table 3. Statistical Measures of plant identification error using the MCC criterion.

Time Interval between Outliers Mean Standard Deviation Skewness Kurtosis

20 s 0.0026 0.0610 −4.38 39.85
10 s 0.0003 0.1091 −1.13 15.26
5 s 0.0015 0.1385 0.30 9.54
1 s 0.1023 0.3477 −0.12 3.12

Another way to see the rejection of outliers is through the Correntropy Induced Metric
(CIM), as shown in Figure 15. Consider the worst case scenario, where the noise insertion
time interval is 1 s, as shown in Figure 14 and also consider a Equation (26), where the
desired value is X = {10} and the values assured by the PT-3 transducer are described by
Y. In addition, N = 10 and σ = 15 were adopted in this calculation, which corresponds to
the tuning values of the controller’s adaptation mechanism, resulting in

CIM(10, Y) = 0.16 ·
(

1− exp

(
− (10−Y)2

2 · (0.027)2

))1/2

(26)

Figure 15. Measurement of the CIM for parametric estimation error.
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6.6. Performance Comparison between MCC and MSE Criterion

In the current experiment, to compare the use of the proposed criterion, the same pre-
vious experiment was performed (Section 6.5) but now using as criterion the Mean Squared
Error, described by Equation (27), to compose the parametric estimation mechanism and
controller adaptation.

JMSE =
1
N

N

∑
n=1

1
2

ε2 (27)

where N is the observation window, and ε is the error between the measured and esti-
mated value.

Using ε = yp − ym in Equation (27), where yp is defined by Equation (5), and ym is
considered constant, since it does not depend on the parameters to be adjusted. Therefore,
to minimize the value of JMSE, one must modify the parameters Kp, Ki, and Kd in direction
of their downward gradient, such as

dKp

dt
= −γp

∂JMSE
∂Kp

(28)

dKi
dt

= −γi
∂JMSE

∂Ki
(29)

dKd
dt

= −γd
∂JMSE

∂Kd
(30)

where γp, γi, and γd are the controller adaptation gains, which adjust the learning rate.
For the parametric estimation mechanism, the same procedures exposed above were

performed. For this, ε = yp − ye will be considered, replacing Equations (14) and (5) in
continuous form in Equation (27) and applying the descending gradient method for each
of the estimated plant values, obtaining

da1

dt
= −γa1

∂JMSE
∂a1

(31)

da2

dt
= −γa2

∂JMSE
∂a2

(32)

da3

dt
= −γa3

∂JMSE
∂a3

(33)

The parameters of the controller that use the MSE as a criterion were empirically
adjusted as γa1 = 8× 10−5, γa2 = 8× 10−5, γa3 = 4× 10−5, γp = 8× 10−5, γI = 8× 10−5,
γd = 4× 10−5, Ne = 3 and N = 6.

Figures 16 and 17 show 2 of the 4 trials performed for different insertion periods of the
outliers: 20, 10, 5, and 1 s. Comparing these results with those presented in the previous
experiment, it can be seen that for long periods of insertion of outliers, the controller using
the MSE criterion performs similar to the MCC; due to the reduced amount of outliers, the
average error is close to zero, the Euclidean region of the CIM space.

On the other hand, when the period is short and consequently there are more outliers,
the MSE criterion is less robust to the presence of outliers than the controller that makes
use of the MCC, as can be shown in Figures 14 and 17. This fact happens because the MCC
has a natural rejection of outliers, a result of the exponential decay of the Gaussian kernel.
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Figure 16. System using the MSE criterion subjected to outliers at intervals of every 20 s.

Figure 17. System using the MSE criterion subjected to outliers at intervals of every 1 s.

The quantification of the error in the permanent regime, of tracking and parametric
estimation, is presented in Tables 4 and 5, respectively. The intolerance to outliers of the
MSE criterion results from its mathematical formula, which only has first and second-order
statistical moments, consequently adding to the model the spurious values included in
the error.

Table 4. Statistical measurements of the tracking error of the controlled system using the
MSE criterion.

Time Interval between Outliers Mean Standard Deviation Skewness Kurtosis

20 s 0.0013 0.4818 −0.4504 333.44
10 s −0.0044 0.4484 −2.36 208.69
5 s 0.5031 1.1405 0.02 24.10
1 s 1.6478 1.8276 −0.4295 14.35

Table 5. Statistical Measures of plant identification error using the MSE criterion.

Time Interval between Outliers Mean Standard Deviation Skewness Kurtosis

20 s 0.0029 0.0800 2.82 49.53
10 s −0.0004 0.0698 −1.1177 32.03
5 s 0.4925 0.7190 1.2010 3.93
1 s 1.8365 1.2868 −0.1600 5.75
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The exponential decay of the mathematical expression of the Maximum Correntropy
Criterion with Gaussian kernel (Equation (9)), naturally rejects the spurious values of the
tracking and estimation error, that is, when the error will tend to infinity, as in the case of
outliers, this decay assigns a minimum value to the cost function, consequently reducing
the impact of these undesired values on the parameters to be adapted.

For the experiments where no outliers are present, both controller error evaluation
criteria showed similar characteristics. This is expected because the Maximum Correntropy
criterion approximates the MSE criterion when the errors tend to zero. On the other hand,
when there is excessive presence of outliers, as in the case of the outlier insertion interval
every 1 and 5 s, the use of MCC reduced the average tracking error by 1700% and 31,443%,
respectively, compared to the MSE criterion. The estimation error, in this same situation, is
reduced by 32,833% and 1800%, respectively.

7. Conclusions

In this work, an indirect adaptive control system by reference model was proposed for
modeling and controlling hydraulic pressure in water supply systems (IMRAC-PID-MCC).
The methodology was developed following the concepts of Information Theory, specifically,
the definitions associated with Maximum Correntropy.

The following advantages of using the proposed controller for pressure management
in a water supply system are noted:

• It does not require an expert to determine the rules that limit the controller’s action,
as in the case of a controller based on Fuzzy logic. Therefore, if the system changes its
dynamics, the IMRAC-PID-MCC can adapt to reduce the error to zero;

• It performs system identification and controller parameter updating in real time and
does not require a prior data set to perform these functions, as in the case of ANN-
based controllers. This is an important advantage, because in many cases, the data
modeling the water consumption profile, pumping system output pressure, variation
in reservoir level, and the times at which the pump was actuated are not known;

• Because IMRAC-PID-MCC uses a reference model, it provides the knowledge of the
mathematical equation that models the system to perform the controller tuning, as in
the cases of using the PID controller and Predictive Model.

The adjustment of the kernel width and observation window changes the dynamics
of the controlled plant. An excessively small kernel width can cause instability and/or
oscillations during the transient regime of the controlled system because it makes it sensitive
to error variation. However, excessively large values cause the loss of information, because
they approximate the error PDF to a Gaussian, making the information contributions of
higher-order statistical moments irrelevant.

The controller proved to be robust to variations in the reference value, changes in the
plant characteristics, diverging by a maximum of 15% during the periods of change, in all
cases demonstrating percentage overshoot less than 5% and steady-state error less than 2%.

The robustness to outliers allows the system to remain stable in cases where the trans-
ducer of the variable to be controlled is damaged, and consequently, there is a failure in
the measured signal. In water supply systems, such failures can be caused by electromag-
netic interference from the pumping station motors, cable breakdown, or as a result of
excessive vibrations.

For future work we propose to investigate the comparison of Indirect Adaptive Control
by Reference Model with Direct Adaptive Control by Reference Model, using the same
criteria and optimization algorithm. Another recommendation is improving the adaptation
mechanism to increase convergence rate and reduce stagnation in local points of minimal.
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