

Universidade Federal da Paraíba Centro de Tecnologia PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA URBANA E AMBIENTAL – MESTRADO –

EFICIÊNCIA ENERGÉRTICA DE SISTEMAS DE ABASTECIMENTO DE ÁGUA PARA DIFERENTES PRESSÕES DISPONÍVEIS NAS ENTRADAS DAS EDIFICAÇÕES

Por

Nicolle de Belmont Sabino Rocha

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre

João Pessoa - Paraíba

Setembro de 2014

Universidade Federal da Paraíba Centro de Tecnologia PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA URBANA E AMBIENTAL – MESTRADO –

EFICIÊNCIA ENERGÉTICA DE SISTEMAS DE ABASTECIMENTO DE ÁGUA PARA DIFERENTES PRESSÕES DISPONÍVEIS NAS ENTRADAS DAS EDIFICAÇÕES

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Urbana e Ambiental da Universidade Federal da Paraíba, como parte dos requisitos para a obtenção do título de Mestre.

Nicolle de Belmont Sabino Rocha

Orientador: Prof. Dr. Heber Pimentel Gomes

João Pessoa - Paraíba

Setembro de 2014

NICOLLE DE BELMONT SABINO ROCHA

EFICIÊNCIA ENERGÉTICA DE SISTEMAS DE ABASTECIMENTO DE ÁGUA PARA DIFERENTES PRESSÕES DIPONÍVEIS NAS ENTRADAS DAS EDIFICAÇÕES

BANCA EXAMINADORA:

Prof. Dr. Heber Pimentel Gomes – UFPB (Orientador)

Prof. Dr. Cristiano das Neves Almeida – UFPB (Examinador Interno)

Prof. Dr. Saulo de Tarso Marques Bezerra - UFPE (Examinador Externo)

AGRADECIMENTOS

A Deus pelas bênçãos que me são concedidas todos os dias, e pela família e amigos maravilhosos que me deu.

A minha mãe, Ana Claudia, por ser meu exemplo de mulher; sábia, forte e de coração imenso. Todo dia agradeço a Deus por sua existência e pelo seu amor incondicional.

Ao meu pai, Roberto, pelo seu apoio e ensinamento, e por ser um exemplo de superação.

A minha irmã, Natália, por me lembrar a não levar a vida tão a sério. Por ser a pessoa carinhosa e generosa que tanto amo, e que sabe que a gente briga, mas se diverte.

Ao meu irmão, José Roberto, meu grande orgulho, por ser essa pessoa maravilhosa na qual me espelho em todos os aspectos, e que sinto uma falta imensa no meu dia a dia.

Ao meu noivo, Pedro, por ser compreensível e companheiro, me apoiando nos momentos mais difíceis, me suportando nos momentos de chatice e me amando incondicionalmente. Por ser a minha paz.

Aos amigos que fiz durante o mestrado, em especial, Roberta, Flávia, Antônio Henrique, Renato e Laís, pelos conhecimentos compartilhados, e pelo apoio e descontração nos momentos difíceis.

Ao colega Moisés Salvino, pela colaboração, ensinamentos e companheirismo ao longo dessa jornada.

Ao meu orientador, Dr. Heber Pimentel Gomes pela oportunidade de desenvolver esse trabalho sob sua supervisão, compartilhando suas experiências e conhecimentos.

RESUMO

Água e energia são dois recursos essenciais para a sociedade e possuem uma forte interdependência. Dentre os grandes consumidores de energia, o setor de saneamento se destaca como um dos usuários de maior demanda. A energia elétrica está entre os três principais itens de custo das companhias e, em muitos casos, representa a segunda despesa, perdendo apenas para as despesas com pessoal. Alguns estudos estimam que o consumo de energia para bombear, tratar e distribuir água para as populações urbanas representa de 2 a 3% do total de energia elétrica consumida no mundo. Diante da busca por alternativas mais eficientes, este trabalho tem como objetivo o estudo comparativo da eficiência energética de sistemas de abastecimento de água para diferentes pressões disponíveis nos pontos de entrada das edificações. Basicamente, o estudo compara os custos de implantação e operação dos sistemas de distribuição de água projetados para atender edificações com instalações abastecidas diretamente e indiretamente pela rede. No primeiro sistema, as instalações possuem reservatórios para armazenamento da água proveniente da rede de distribuição, em seguida esta é bombeada por meio de um sistema de impulsão próprio para um reservatório elevado, e daí a água chega ao consumidor final por gravidade. Enquanto o segundo sistema adota um sistema de bombeamento direto nas edificações, dispensando o uso de reservatórios domiciliares. A metodologia empregada neste trabalho adotou o dimensionamento otimizado de redes de distribuição através do método LENHSNET, que determina o dimensionamento ótimo dos sistemas e instalações, e o modelo de simulação EPANET. Posteriormente, foram calculados e avaliados os custos de implantação e operação das alternativas. Os resultados obtidos mostraram que, em termos econômicos, o sistema com bombeamento direto para as instalações é mais caro, em virtude do sistema requerer que as bombas funcionem 24 horas por dia.

Palavras-chave: sistemas de abastecimento de água, eficiência energética, LENHSNET, EPANET.

ABSTRACT

Water and energy are two essential resources for society and have a strong interdependence. Among the major energy consumers, the sanitation sector stands out as one of the most demanding users. The electricity is in the top three most important companies cost items and, in many cases, is the second spending, second only to personnel expenses. Some studies estimate that power consumption to pump, treat and distribute water for urban populations is 2-3% of the total electricity consumed in the world. Faced with the search for more efficient alternatives, this paper aims to study the comparative energy efficiency of water supply systems for different pressures available at the entry points of buildings. Basically, the study compares the costs of implementation and operation of water distribution systems designed to supply buildings with facilities supplied directly and indirectly by the network. In the first system, the facilities have storage tanks for water from the distribution system, then it is pumped through its own system of impulse to a high reservoir, and the water then reaches the final consumer by gravity. The second system adopts a direct pumping system in buildings, eliminating the use of domestic reservoirs. The methodology adopted in this study used the optimized design of distribution networks through LENHSNET method, which determines the optimum design of the systems and facilities, and the EPANET simulation model. Later, the implementation and operation costs of the alternatives were calculated and evaluated. The results showed that, in economic terms, the system with direct pumping to the facilities is more expensive, because the system requires the pumps to run 24 hours a day.

Keywords: water supply systems, energy efficiency, LENHSNET, EPANET.

LISTA DE ILUSTRAÇÕES

Figura 1 – Nível de atendimento urbano por rede geral de abastecimento de água em 201016
Figura 2 - Representação espacial do índice de perdas na distribuição (indicador IN_{049}) dos
prestadores de serviços participantes do SNIS em 2012, distribuido por faixas
percentuais, segundo estado
Figura 3 - Fluxograma da metodologia do LENHSNET
Figura 4 - Modelagem de edifício com 5 pavimentos do sistema com pressão mínima na
entrada de 10 mca
Figura 5 - Modelagem de edifício com 20 pavimentos do sistema com pressão mínima na
entrada de 10 mca (a) e 25 mca (b)
Figura 6 - Ajustes na modelagem da edificação de 5 pavimentos do sistema com pressão
mínima na entrada de 10 mca36
Figura 7 - Ajustes na modelagem da edificação de 20 pavimentos do sistema com pressão
mínima na entrada de 10 mca37
Figura 8 - Ajustes na modelagem da edificação de 20 pavimentos do sistema com pressão
mínima na rede de 25 mca
Figura 9 - Padrão de consumo dos nós
Figura 10 - Curva da bomba da edificação de 5 pavimentos do sistema com pressão mínima
na rede de 10 mca
Figura 11 - Curva da bomba da edificação de 20 pavimentos do sistema com pressão mínima
na rede de 10 mca40
Figura 12 - Curva da bomba da edificação de 20 pavimentos do sistema com pressão mínima
na rede de 25 mca40
Figura 13 - Padrão de preço de energia41
Figura 14 - Representação esquemática da cidade hipotética
Figura 15 - Ajustes na modelagem da cidade hipotética para os cenários com pressão mínima
na rede de 10 mca45
Figura 16 - Curva da bomba do Cenário 1 do sistema com pressão mínima na rede de 10 mca.
Figura 17 - Ajustes na modelagem da cidade hipotética para os cenários com pressão mínima
na rede de 25 mca47
Figura 18 - Curva da bomba do Cenário 1 do sistema com pressão mínima na rede de 25 mca.

Figura 19 - Pontos de consumo com pressões mais desfavoráveis na edificação de 5
pavimentos com distribuição de água por gravidade50
Figura 20 - Variação de pressão no nó 1 (N1), ao longo do dia, do edifício de 5 pavimentos
com distribuição de água por gravidade50
Figura 21 - Pontos de consumo com pressões mais desfavoráveis na edificação de 20
pavimentos com distribuição de água por gravidade
Figura 22 - Variação de pressão no nó 1 (N1), ao longo do dia, do edifício de 20 pavimentos
com distribuição de água por gravidade51
Figura 23 - Pontos de consumo com pressões mais desfavoráveis na edificação de 20
pavimentos com bombeamento direto
Figura 24 - Variação de pressão no nó 22 (N22), ao longo do dia, do edifício de 20
pavimentos com bombeamento direto
Figura 25 - Variação de pressão no nó 97 (N97), ao longo do dia, do edifício de 20
pavimentos com bombeamento direto53
Figura 26 - Balanço de vazão da edificação com 5 pavimentos com parada de bombeamento.
Figura 27 - Balanço de vazão da edificação com 20 pavimentos com parada de bombeamento.
Figura 28 - Balanço de vazão da edificação com 20 pavimentos com bombeamento direto55
Figura 29 - Ponto de consumo com pressão mais desfavorável na cidade hipotética56
Figura 30 - Balanço de vazão do Cenário 8 do sistema com parada de bombeamento no
horário de ponta58
Figura 31 - Balanço de vazão do Cenário 8 do sistema com bombeamento direto58
Figura 32 - Gráfico de comparação do custo total dos cenários com sistemas de abastecimento
com pressão mínima de 10 mca e 25 mca61

LISTAS DE TABELAS

Tabela 1 - Dados dos tubos para dimensonamento das edificações. 35
Tabela 2 - Número de edificações dos cenários simulados. 42
Tabela 3 - Cenários adotados
Tabela 4 - Custo para implantação de tubulações. 44
Tabela 5 - Cálculo dos diâmetros dos reservatórios46
Tabela 6 - Dados para a curva da bomba de cada cenário47
Tabela 7 - Custo energético atualizado das edificações
Tabela 8 - Pressões mínimas e máximas no N1 para os cenários do sistema com pressão
mínima de 10 mca57
Tabela 9 - Pressões mínimas e máximas no N1 para os cenários do sistema com pressão
mínima de 25 mca
Tabela 10 - Custo energético dos cenários para os sistemas com pressões mínimas de 10 mca
e 25 mca
Tabela 11 - Custo de implantação do sistema de abastecimento de água para cenários da
cidade com pressão mínima de 10 mca e 25 mca59
Tabela 12 - Custo atualizado de energia do total das edificações nos cenários dos sistemas
com pressão mínima de 10 mca e 25 mca60
Tabela 13 - Custo total dos cenários com sistemas de abastecimento com pressão mínima de
10 mca e 25 mca61

LISTA DE ABREVIATUTAS, SIGLAS E SÍMBOLOS

Α	Área da seção transversal da tubulação			
AG	Algoritmos Genéticos			
ANA	Agência Nacional de Águas			
D	Diâmetro interno do tubo			
e	Taxa de juros de energia			
ELETROBRAS	Centrais Elétricas Brasileiras S. A.			
EPA	U.S. Environmental Protection Agency			
ЕТА	Estação de Tratamento de Água			
f	Fator de atrito			
F _a	Fator de atualização			
g	Aceleração da gravidade			
GFO	Gradiente de Função Objetivo			
GPL	Gradiente de Programação Linear			
h	Número de horas de funcionamento das unidades do sistema			
$\mathbf{H}_{\mathbf{f}}$	Perda de carga			
$\mathbf{H}_{\mathbf{fl}}$	Perda de carga linear ou distribuída			
H _{fs}	Perda de carga singular ou localizada			
i	Taxa de juros anual			
IBGE	Instituto Brasileiro de Geografia e Estatística			
k	Coeficiente específico da peça que introduz as perdas			
k ₁	Coeficiente do dia de maior consumo			
k ₂	Coeficiente da hora de maior consumo			
L	Comprimento do tubo			
n	Alcance de projeto			
η	Rendimento conjunto motor bomba			
Nb	Horas de bombeamento			
NBR	Norma Brasileira Regulamentadora			
Р	População a ser abastecida pelo projeto			
PD	Programação Dinâmica			
PL	Programação Linear			
PNL	Programação Não Linear			

PROCEL SANEAR	Programa de Eficiência Energética em Saneamento Ambiental
PVC	Policloreto de Vinila
Q	Vazão
q	Consumo per capita
RNF	Reservatório de Nível Fixo
RNV	Reservatório de Nível Variável
SINAP	Sistema Nacional de Custos e Índices da Construção Civil
SNIS	Sistema Nacional de Informação sobre Saneamento
Τ	Tarifa de energia
V	Velocidade média

SUMÁRIO

1 INTRODUÇÃO	13
1.1 OBJETIVOS	14
1.1.1 Objetivo Geral	14
1.1.2 Objetivos Específicos	14
1.2ESTRUTURA DA DISSERTAÇÃO	15
2 FUNDAMENTAÇÃO TEÓRICA	16
2.1 SISTEMA DE ABASTECIMENTO DE ÁGUA	
2.1.1 Redes	
2.1.2 Quantidade de água requerida	
2.1.3 Condições hidráulicas	21
2.1.4 Seleção de materiais	22
2.2 SIMULADORES HIDRÁULICOS	23
2.3 MÉTODOS DE OTIMIZAÇÃO PARA DIMENSIONAMENTO DE REDES	25
2.3.1 LENHSNET	
3 MATERIAIS E MÉTODOS	32
3.1 EDIFICAÇÕES	32
3.1.1 Procedimentos para o dimensionamento das tubulações nas edificações	
3.1.2 Procedimentos para simulação de redes nas edificações	
3.1.3 Caracterização energética nas edificações	41
3.2CIDADE HIPOTÉTICA	41
3.2.1 Procedimentos para o dimensionamento das tubulações nos cenários propostos	
3.2.2 Procedimentos para simulação dos cenários	
3.2.3 Caracterização energética nos cenários	
4 RESULTADOS E DISCUSSÕES	49
4.1 EDIFICAÇÕES	49
4.1.1 Análise de pressões disponíveis nos pontos de consumo	
4.1.2 Análise de composição energética	53
4.2 CIDADE HIPOTÉTICA	56
4.2.1 Análise de pressões disponíveis nos pontos de consumo	56
4.2.2 Análise de composição energética	57
4.3 CUSTOS TOTAIS	59
5 CONCLUSÕES E RECOMENDAÇÕES	62
REFERÊNCIAS	64

APÊNDICE A	
APÊNDICE B	
APÊNDICE C	
APÊNDICE D	

1 INTRODUÇÃO

Água e energia são dois recursos essenciais para a sociedade e possuem uma forte interdependência. A gestão de recursos hídricos e energéticos tornou-se um dos maiores desafios para os países em desenvolvimento.

Dentre os grandes consumidores de energia, o setor de saneamento se destaca como um dos usuários de maior demanda. A energia elétrica está entre os três principais itens de custo dos prestadores de serviços e, em muitos casos, representa a segunda despesa, perdendo apenas para as despesas com pessoal. Alguns estudos estimam que o consumo de energia para bombear, distribuir e tratar água para as populações urbanas representa de 2 a 3% do total de energia elétrica consumida no mundo (STOKES e HORVATH, 2006), sendo que a maior parte é consumida pelos sistemas de bombeamento (WANG *et al.*, 2009).

No Brasil, em julho de 2000, foi aprovada a Lei n° 9.991 que obriga as concessionárias de energia elétrica a aplicar um montante mínimo em programas de eficiência energética no uso final. Em outubro de 2001, foi aprovada a Lei de Eficiência Energética n° 10.295 que estabelece padrões mínimos de Eficiência Energética para equipamentos comercializados no país. A Eletrobrás instituiu, em 2003, o Programa de Eficiência Energética em Saneamento Ambiental (PROCEL SANEAR), com o objetivo de promover o consumo racional de energia elétrica, a partir do combate do desperdício de água, reduzindo os custos operacionais e evitando investimentos desnecessários no aumento da produção de água (PEREIRA e CONDURÚ, 2014).

Tradicionalmente, as redes de distribuição de água e o fornecimento de energia são considerados como sistemas de infraestrutura desacoplados. No entanto, as últimas pesquisas demonstram a importância do estudo conjunto (interdependência) destes recursos (SANTHOSH *et al.*, 2013; MO *et al.*, 2014), que é comumente descrita na comunidade internacional como *energy-water nexus* (OLSSONN, 2012). Os sistemas de energia e de água podem ser vistos como duas cadeias de valor interligadas. A maior atenção tem sido dada as interações de fornecimento de energia para a demanda de água ou vice-versa (MACKNICK *et al.*, 2011; SANTHOSH *et al.*, 2013).

A otimização das operações em sistemas de consumo ou produção de energia tem sido investigada há algumas décadas (RAMOS, 2003). O interesse por esta área não está apenas relacionada com a complexidade do problema, mas também pelos benefícios econômicos resultantes da solução escolhida (ANAGNOSTOPOULOS e PAPANTONIS, 2007).

Eficiência energética e hidráulica devem ser metas para o desenvolvimento sustentável dos sistemas de abastecimento de água.

Eficiência energética no setor de saneamento representa um conjunto de ações e procedimentos que tem como objetivo captar, tratar e fornecer água potável em quantidade suficiente, com o menor desperdício de água e energia possível. De modo geral, as ações dependem de um conjunto de diagnósticos e ações das engenharias hidráulica, mecânica e elétrica (GOMES e CARVALHO, 2012).

Diante da busca por alternativas mais eficientes, este trabalho tem como objetivo o estudo comparativo da eficiência energética de sistemas de abastecimento de água para diferentes pressões disponíveis nos pontos de entrada das edificações. Basicamente, o estudo compara os custos de implantação e operação dos sistemas de distribuição de água projetados para atender edificações com instalações abastecidas diretamente e indiretamente pela rede. O primeiro sistema impõe que as instalações residenciais e prediais possuam reservatórios para armazenamento da água proveniente da rede de distribuição, posteriormente essa água é bombeada por meio de um sistema de impulsão próprio para um reservatório elevado, e daí a água chega ao consumidor final por gravidade. O segundo sistema adota um sistema de bombeamento direto nas edificações, dispensando o uso de reservatórios domiciliares.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Objetiva-se, com esta pesquisa, avaliar os custos de implantação e operação de sistemas de distribuição de água, com diferentes pressões mínimas nos pontos de consumo, somado com as parcelas energéticas das edificações.

1.1.2 Objetivos Específicos

- Elaborar um modelo hidráulico de uma cidade hipotética para aplicação do estudo proposto;
- Criar cenários que caracterizem a crescente verticalização das edificações nos grandes centros urbanos;
- Determinar o custo de implantação e energético dos cenários da cidade hipotética;

• Analisar, comparativamente, os sistemas de abastecimento de água propostos.

1.2 ESTRUTURA DA DISSERTAÇÃO

A presente dissertação está estruturada em 5 capítulos, além das referências bibliográficas. Esse primeiro capítulo apresenta, resumidamente, a importância da eficiência energética, além do objetivo geral e dos específicos desse trabalho.

O capítulo 2 aborda a fundamentação teórica, que tem como objetivo descrever conceitos e trabalhos relevantes para o desenvolvimento desse estudo.

O capítulo 3 apresenta a metodologia escolhida para o desenvolvimento desse trabalho. Este capítulo descreve as características adotadas para as edificações, a cidade hipotética e suas redes, além das etapas realizadas para extração dos dados para a comparação desejada. Essas etapas estão divididas em dimensionamento das tubulações, simulação e caracterização energética das redes.

O capítulo 4 mostra os resultados e discussões dos sistemas estudados, verificando se as características pré-determinadas foram atendidas, comparando os custos de implantação e operação dos sistemas.

O capítulo 5 apresenta as conclusões e recomendações, a partir das discussões dos resultados.

2 FUNDAMENTAÇÃO TEÓRICA

Segundo informações do Censo Demográfico (IBGE, 2010), o Brasil possui 90,88% de sua população urbana atendida por rede de água, isso representa um aumento de 1,2% ao longo da última década. Na Figura 1 podem-se observar os índices de cobertura de abastecimento de água no Brasil, salientando que a existência das redes não significa garantia de oferta hídrica e nem das condições de operação. Os maiores índices de atendimento foram encontrados na Região Sudeste do Brasil (ANA, 2013).

Figura 1 – Nível de atendimento urbano por rede geral de abastecimento de água em 2010.

Fonte: ANA, 2013.

Segundo Pereira e Condurú (2014), é preciso entender os problemas relacionados ao uso de água e energia, e encontrar soluções para as situações que podem prejudicar os setores de abastecimento de água e energia elétrica. Um dos maiores problemas dos sistemas de abastecimento de água são as perdas, que são representadas pelos volumes de água retirados dos mananciais subtraído dos volumes medidos nos hidrômetros. Um grande volume de água é perdido, gerando assim desperdício de energia elétrica principalmente nas etapas de bombeamento e tratamento da água.

O índice de perdas na distribuição de água no Brasil, considerando apenas os prestadores de serviços participantes do Sistema Nacional de Informação sobre Saneamento (SNIS, 2014), ano de referência 2012, foi de 36,9%. As regiões Norte e Nordeste apresentaram os maiores índices e a região Centro-Oeste o menor índice. Dos estados participantes, o Amapá apresentou o maior índice de perdas, totalizando 71,9%, e o Distrito Federal o menor com 23,9% (Figura 2). Com base nos dados do SNIS (2014) e considerando uma relação direta entre as perdas de água e o consumo de energia, estima-se que o Brasil desperdice mais de 4 bilhões de kWh/ano no tratamento e transporte de água.

Gómez *et al.*(2012) analisaram 133 cidades andaluzas no sul da Espanha, sendo essa a região que tem o maior nível de estresse hídrico na União Europeia. Foram encontradas perdas de água relativamente altas, e posteriormente foram utilizadas análises de regressão em uma seção cruzada de dados para descobrir o motivo dessas perdas. Um dos principais motivos encontrados foi a atual regulamentação que desestimulam os governos locais a realizarem ações necessárias para reduzir essas perdas.

As empresas de saneamento consumem cerca de 2 a 10% do total de eletricidade usada em um país (PELLI e HITZ, 2000). Em média, cada metro cúbico de água fornecido corresponde ao consumo de 0,6 kWh (TSUTIYA, 2006). Logo, é de extrema importância o aumento da eficiência energética e hidráulica dos sistemas de abastecimento de água.

Figura 2 - Representação espacial do índice de perdas na distribuição (indicador IN₀₄₉) dos prestadores de serviços participantes do SNIS em 2012, distribuido por faixas percentuais, segundo estado.

2.1 SISTEMA DE ABASTECIMENTO DE ÁGUA

Um sistema de abastecimento de água é um conjunto de estruturas e dispositivos que tem como função a captação de água de um manancial, que deve possuir qualidade, vazão e pressão suficiente para atender a demanda de água, o tratamento e o transporte aos consumidores finais. Essa água captada é direcionada, através de adutoras, para uma estação de tratamento (ETA) com o propósito de torná-la potável. A água segue pelas adutoras podendo passar por unidades, como por exemplo, reservatórios, que precedem a rede de

distribuição. Essa rede é a parte do sistema de abastecimento formada por tubulações e órgãos acessórios, com finalidade de colocar água potável à disposição dos consumidores de forma contínua, em quantidade e pressão admissível (TSUTIYA, 2006).

2.1.1 Redes

Os sistemas de distribuição de água são formados pelas redes de distribuição de água, sistemas de bombeamentos e/ou reservatórios. A rede de distribuição de água é a parte do sistema de abastecimento formada por uma infraestrutura de tubulações primárias e secundárias, com o objetivo de conduzir água até o consumidor, com vazão, pressão e qualidade adequada. As tubulações primárias são compostas por diâmetros maiores, e têm como finalidade atender as tubulações secundárias, que por sua vez possuem diâmetros menores e tem como função atender diretamente os pontos de consumo (TSUTIYA, 2006).

Uma rede é basicamente composta pelos seguintes elementos: nós, que são os pontos de variação de demanda e conectam dois trechos; trechos, que são as tubulações entre dois nós, onde a vazão permanece constante; nó de derivação, que tem como função conectar três ou mais trechos; ramal, que representa um conjunto de trechos conectados sem nós; artérias, que são percursos principais da rede, formadas por ramais agrupados em série; alimentação da rede, que é a origem da rede, onde normalmente se localiza o reservatório de distribuição ou o bombeamento direto (GOMES, 2009a).

As redes podem ser classificadas em ramificada, malhada ou mista. A rede ramificada é composta por uma tubulação tronco que conduz água para os condutos secundários, apresentando um único sentido de escoamento. A rede malhada é composta por uma tubulação principal que formam malhas ou anéis que possibilitam mudar o sentido da vazão de acordo com a necessidade.

Para elaboração do projeto de um sistema de distribuição de água é necessário se determinar elementos básicos como: quantidade de água requerida, condições hidráulicas e escolha do tipo de tubulação.

2.1.2 Quantidade de água requerida

Segundo Gomes (2009a), para se determinar a quantidade de água requerida do sistema deve-se levar em consideração o alcance de projeto, as previsões de população, a estimativa de perdas, a estimativa dos consumos e suas variações.

O alcance de projeto corresponde ao período de atendimento das estruturas físicas projetadas, que depende de fatores como o crescimento da população, vida útil dos equipamentos e das obras civis, facilidade de ampliação das obras físicas, disponibilidade financeira, taxas de juro, inflação e recursos financeiros da população. Na literatura brasileira geralmente se encontra variações, no alcance de projeto, entre 10 e 30 anos para projetos de sistemas de abastecimento de água (GOMES, 2009a).

Para se determinar a previsão de população do sistema, deve-se levar em consideração a evolução da população ao longo do alcance de projeto. Existem diversos métodos para estudar esse crescimento, que normalmente usam como base dados anteriores ao ano da elaboração do projeto.

As perdas num sistema de abastecimento podem ser originadas por vazamentos nas tubulações (perdas reais ou físicas), e pelo volume de água consumido que não é contabilizado pelas concessionárias (perdas aparentes), essa última decorrente de ligações clandestinas, fraudes nos hidrômetros, erros de medição e nos cadastros comerciais.

A estimativa dos consumos é influenciada por diversos fatores, como: clima, hábitos da população, padrão de vida, finalidade de uso, entre outros. É considerado consumo per capita a média diária, por indivíduo, dos volumes de água consumidos. Dados do SNIS (2014) mostram que no ano de 2012, o Brasil apresentou um consumo per capita de água de 167,5 L/hab.dia, representando um aumento de consumo de 2,7% em relação aos três anos anteriores.

Para efeito de dimensionamento de uma rede de distribuição de água, o cálculo da vazão (Eq. 1) deve levar em consideração as variações de consumo de água diárias e horárias, já que o consumo diário é maior ou menor que o consumo médio diário anual, e o consumo horário varia de acordo com a hora do dia (TSUTIYA, 2006). Essas variações são representadas pelo coeficiente do dia de maior consumo (Eq. 2) e pelo coeficiente da hora de maior consumo (Eq. 3).

$$Q = \frac{P \times q}{3600 \times h} k_1 k_2 \tag{Eq. 1}$$

Onde: Q = vazão (L/s); P = população a ser abastecida pelo projeto (hab); q = consumo per capita (L/hab.dia); h= número de horas de funcionamento das unidades do sistema de abastecimento.

$$k_{1} = \frac{\text{maior consumo diário no ano}}{\text{consumo médio diá rio no ano}}$$
(Eq. 2)

Onde: k_1 = coeficiente do dia de maior consumo.

$$k_{2} = \frac{\text{maior vazão horária no dia}}{\text{vazão média do dia}}$$
(Eq. 3)

Onde: $k_2 = coeficiente da hora de maior consumo.$

Qi e Chang (2011) realizaram uma revisão dos modelos de previsão de demanda das últimas cinco décadas e propuseram um novo sistema de modelo dinâmico que reflete a relação intrínseca entre a demanda de água e o ambiente macroeconômico, utilizando estimação de amostras, para a previsão em longo prazo de demanda de água municipal numa região de crescimento urbano acelerado. A ferramenta de previsão de demanda de água proposta foi avaliada por meio de um estudo de caso de uma cidade da Florida (EUA). Segundo os autores a estimativa da demanda da água para uso doméstico entre o ano de 2003 e 2009 dessa cidade foi bem sucedida, mesmo com dados históricos limitados da população e do consumo da água.

2.1.3 Condições hidráulicas

As principais condições hidráulicas impostas aos projetos de redes de distribuição de água estão relacionadas às grandezas pressão e velocidade. As pressões mínimas e máximas determinadas numa rede de distribuição de água terão grande impacto no custo de implantação e operação do sistema. A determinação de pressões mínimas depende da carga necessária para alimentar todos os consumidores das instalações prediais, enquanto a determinação de pressões máximas deve levar em consideração que quanto maior a pressão, maior é o custo energético de bombeamento, maior é o custo das tubulações e maior é o risco de ruptura nas tubulações causando aumento nas perdas reais de água (GOMES, 2009a). A norma NBR12218 (1994) estabelece que no Brasil a pressão dinâmica mínima na rede deve ser de 10 mca, e pressão estática máxima na rede deve ser 50 mca.

Os limites de velocidade devem levar em consideração a segurança e durabilidade das tubulações, e o custo de implantação e operação (TSUTIYA, 2006). Observa-se que velocidades altas aumentam a perda de carga, elevam os custos energéticos, causam ruídos e aumentam o desgaste nas tubulações, aumentando assim os custos de manutenção. A norma NBR12218 (1994) estabelece a velocidade máxima nas tubulações de 3,5 m/s e a mínima de 0,6 m/s (estes limites referem-se às demandas máximas diárias no início e no final da etapa de execução da rede).

Outra grandeza determinante na análise de redes hidráulicas é a perda de carga. A perda de carga em uma tubulação pode ser dividida em duas parcelas (Eq. 4): as perdas de carga lineares ou distribuídas, que resultam do atrito do fluido nas tubulações, que dependem das características físicas dos fluidos e das geométricas do conduto; e as perdas de carga singulares ou localizadas, que ocorrem pela turbulência provocada pelo desvio de conexões e peças ao longo da rede.

$$H_f = H_{fl} + H_{fs} \tag{Eq. 4}$$

Onde: H_f = perda de carga (m); H_{fi} = perda de carga linear ou distribuída (m); H_{fs} = perda de carga singular ou localizada (m).

As perdas de carga lineares podem ser calculadas pela Fórmula Universal (Darcy-Weisbach) ou por equações empíricas, como as de Manning, Hazen Williams, entre outras. Segundo Gomes (2009a), a fórmula de Darcy-Weisbach (Eq. 5) é a mais aconselhável para a determinação de perdas ao longo dos condutos, pois esta pode ser empregada para qualquer tipo de líquido, materiais e estado das tubulações, desde que determinado corretamente o valor do fator de atrito.

$$H_{fl} = f \frac{L}{D} \frac{V^2}{2g}$$
(Eq. 5)

Onde: H_{fl} = perda de carga linear (mca); f = fator de atrito (adimensional); L = comprimento do tubo (m); V = velocidade média (m/s); D = diâmetro interno do tubo (m); g = aceleração da gravidade (9,81 m/s²).

A perda de carga localizada (Eq. 6) em uma peça especial do conduto pode ser avaliada como uma porcentagem da carga cinética existente.

$$H_{fs} = K \frac{V^2}{2g} \tag{Eq. 6}$$

Onde: H_{fs} = perda de carga localizada (mca); K = coeficiente específico da peça que introduz as perdas; V = velocidade média (m/s); g = aceleração da gravidade (9,81 m/s²).

2.1.4 Seleção de materiais

Os tipos de materiais a serem instalados num sistema de distribuição de água devem atender diversos critérios, como: durabilidade das tubulações, pois elas devem resistir ao longo do seu tempo útil sem sofrer deterioração, pois as substituições de redes representam custos elevados; material da superfície interna das tubulações, que deve ter características que permitam conduzir a água sem sofrer reação e nem corrosão; material da superfície externa das tubulações, que precisa ser resistente à corrosão; tubulações com características de instalação compatíveis com o local, de forma a facilitar seu processo; peso das tubulações e peças, pois podem precisar de equipamentos especiais para instalação ocasionando aumento de custos; tipos de juntas de fácil instalação; diâmetros comerciais para tubulações, pois alguns tipos de materiais podem não ser fabricados nos diâmetros desejados; e tubulações com facilidade de interligações (TSUTIYA, 2006).

2.2 SIMULADORES HIDRÁULICOS

A simulação hidráulica de redes de distribuição de água é indispensável para o controle eficiente dos sistemas (JANSEN e PADE, 2013) e constitui, atualmente, um instrumento com um vasto domínio de aplicabilidade, podendo auxiliar no planejamento, projeto, operação, manutenção e reabilitação de sistemas de abastecimento de água (FERNANDES e MARQUES, 2011).

Em meados do século passado foram desenvolvidos os primeiros simuladores hidráulicos (McILROY, 1950; SURYAPRAKASAM *et al.*, 1950).

Um software de simulação hidráulica, geralmente, resolve as equações de continuidade e energia com base nos dados de entrada fornecidos. Entre algumas tarefas que os simuladores hidráulicos de sistemas de abastecimento de água executam estão: análises hidráulicas para identificação de problemas de pressões insuficientes ou excedentes na rede, identificação de perdas nos sistemas, análises hidráulicas para identificação de problemas da qualidade da água, estudos dos sistemas de bombeamento com finalidade de otimização energética e o diagnóstico dos efeitos da operação de válvulas para intervenções de rotina (COSTA, 2010 apud GOUVEIA, 2012).

Nas últimas décadas, as pesquisas envolvendo simuladores hidráulicos têm evoluído substancialmente, o avanço da engenharia de *softwares* possibilitou o desenvolvimento de programas mais robustos, capazes de realizar uma série de cálculos com grande velocidade e precisão. Os pesquisadores apropriaram-se desse salto tecnológico para estudar problemas reais e complexos (SILVA, 2014).

Segundo Castro (2004), a utilização de ferramentas computacionais na engenharia economiza tempo com a automatização de tarefas rotineiras, além de possibilitar análises mais detalhadas do problema. Devido ao avanço da informática, nos últimos anos surgiram

ferramentas computacionais que representam o sistema de abastecimento como um todo e simulam sua operação ao longo do tempo, auxiliando as tomadas de decisões para melhorar a eficiência da operação (GOMES, 2009a).

Existem modelos de simuladores hidráulicos estáticos e dinâmicos. Os modelos estáticos determinam valores para as variáveis em um determinado cenário de operação, enquanto os modelos dinâmicos determinam a variação desses valores ao longo do tempo.

Há diversos simuladores hidráulicos disponíveis para a modelagem e simulação de sistemas de distribuição de água (Hidrocad, EPANET, INSSAA, Strumap, SynerGee, Watercad, dentre outros). Dentre os programas de simulação hidráulica, destaca-se o EPANET.

O EPANET é um simulador hidráulico desenvolvido pela agência de proteção ambiental dos Estados Unidos (*U.S. Environmental Protection Agency – EPA*), que permite executar simulações estáticas e dinâmicas do comportamento hidráulico e de qualidade de água em redes de distribuição pressurizada. A rede pode ser constituída por nós, tubulações, bombas, válvula, reservatórios de nível fixo e/ou reservatórios de nível variável. O EPANET permite obter os valores da vazão em cada tubulação, da pressão em cada nó, da altura de água em cada reservatório de nível variável e da concentração de espécies químicas através da rede durante o período de simulação, subdividido em múltiplos intervalos de cálculo. Adicionalmente, além de espécies químicas, o modelo simula o cálculo da idade da água e o rastreio da origem de água em qualquer ponto da rede (ROSSMAN, 2000).

O EPANET possui diversas funções, entre elas: cálculo das perdas de carga por atrito empregando as equações de Hazen-Williams, Darcy-Weisbach ou Chezy-Manning; modelagem de bombas com velocidade de rotação constante ou variável; possibilidade de múltiplas categorias de consumo nos nós, cálculo de energia de bombeamento e seu respectivo custo, modelagem de diversos tipos de válvulas e reservatórios de nível fixo e variável; possibilidade de basear as condições de operação do sistema em controles simples ou em controles com condições múltiplas, dentre outras (ROSSMAN, 2000).

Segundo Silva (2008), trata-se de um dos mais confiáveis softwares para simulação de redes de abastecimento de água. Sendo ele uma ferramenta útil para o desenvolvimento de aplicações que requerem a simulação de inúmeras configurações. Por exemplo, Shen e McBean (2010), Koppel e Vassiljev (2011), Olaia (2012) e Estapé (2013) utilizaram o EPANET em apoio as suas pesquisas na área de calibração de redes de distribuição de água.

Shen e McBean (2010) mostraram os procedimentos utilizados para calibração do modelo hidráulico de uma rede. O método de simulação Monte Carlo foi aplicado para

análises de sensibilidade com o objetivo de identificar parâmetros sensíveis para alimentar o processo de calibração. Koppel e Vassiljev (2011) apresentaram um modelo de otimização para a calibração de rugosidades e padrões de demandas do modelo de uma rede proposta.

Olaia (2012) apresentou o modelo hidráulico do sistema de abastecimento de água do Instituto de Investigação Agronômica de Chianga, em Angola. Segundo o autor, a partir dos resultados obtidos, foi possível a formulação de cenários que permitem a otimização da eficiência do sistema ao nível de dimensionamento, gestão e planejamento.

2.3 MÉTODOS DE OTIMIZAÇÃO PARA DIMENSIONAMENTO DE REDES

O estudo das redes de distribuição de água iniciou-se antes do surgimento dos primeiros computadores. Numa fase anterior à era da informática, os engenheiros já projetavam sistemas de distribuição de água por meio de ábacos e com a aplicação de escalas logarítmicas que simplificavam as expressões matemáticas. Em 1936, Hardy Cross, na Universidade de Illinois, desenvolveu um processo sistemático para calcular sistemas hidráulicos (SILVA, 2014).

Os métodos tradicionais de dimensionamento consideram apenas o balanceamento hidráulico da rede, de forma a atender às condições impostas pelas equações da conservação de massa nos nós e conservação de energia nos anéis. Apesar destes métodos não possuírem critérios de dimensionamento visando à minimização dos custos, estes tiveram importância indiscutível na evolução das metodologias voltadas para um melhor dimensionamento dos sistemas de distribuição de água.

A otimização tem como objetivo encontrar a melhor solução dentre todas as soluções possíveis de um determinado problema. Na década de 1960, com o desenvolvimento dos primeiros computadores, surgiram às primeiras pesquisas direcionadas para a aplicação de técnicas de otimização no dimensionamento de redes de distribuição de água.

Os métodos de otimização podem ser divididos em dois grupos: métodos determinísticos, como a programação linear (PL), a programação não linear (PNL), programação dinâmica (PD) e o LENHSNET; e métodos heurísticos, como os algoritmos evolucionários, *swarm intelligence*, dentre outros.

A adoção da programação linear no dimensionamento de redes malhadas foi apresentada por Alperovits e Shamir (1977), e foi capaz de manter os resultados restritos a diâmetros com valores discretos, sem a necessidade de soluções aproximadas. O método Gradiente de Programação Linear (GPL), proposto pelos autores, é dividido em duas etapas: primeiramente, as vazões dos tubos são consideradas constantes e cada trecho é composto por séries de diâmetros comerciais e seus comprimentos considerados variáveis de decisão; na segunda etapa a solução ótima obtida anteriormente é usada para determinar o Gradiente de Função Objetivo e então as vazões são modificadas. O processo se repete até que não haja mais redução de custo.

A enumeração exaustiva, que avalia todas as soluções possíveis e, portanto, gera automaticamente o ótimo global, foi aplicada por Simpson *et al.* (1994). Todavia, esta técnica ainda não é viável para redes de médio e grande porte, pois exige muito tempo de processamento dos computadores. A fim de diminuir o tempo de processamento da enumeração exaustiva, Gessler (1985) e Loubser e Gessler (1990) propuseram a enumeração seletiva (SEN), que não considera todas as soluções possíveis, mas não resolveram o problema do tempo.

A programação não linear oferece uma formulação matemática mais completa. Comparado à programação linear, o modelo de programação não linear é capaz de lidar com múltiplos padrões de demanda e um número muito maior de variáveis de dimensionamento (LANSEY e MAYS, 1990). Os métodos de programação linear e não linear não garantem a solução ótima global se o dimensionamento não for convergente (SIMPSON *et al.*, 1994) e, por vezes, provocam soluções inviáveis. Shamir (1974) e Duan *et al.* (1990) adotaram o método do gradiente reduzido generalizada e apontaram que as principais desvantagens da técnica de PNL são: a solução final depende da solução inicial e o diâmetro das tubulações é atribuido como variável contínua. Gomes e Formiga (2001) desenvolveram um método de dimensionamento econômico de redes malhadas, conhecido como PNL2000, que é composto em duas etapas. Na primeira etapa se faz o pré-dimensionamento, onde as variáveis como diâmetros, vazões e altura manométrica de alimentação são determinadas na otimização. Em seguida, se ajusta os diâmetros encontrados de cada trecho pelo comercial mais próximo.

A programação dinâmica permite a formulação de características não lineares e estatísticas dos sistemas reais. Sua aplicação em otimização de sistemas de distribuição de água, inicia-se pela decomposição do problema em estágios que são analisados sequencialmente, e só irá finalizar quando encontrar a solução mais econômica e viável. O modelo usa, geralmente, um algoritmo iterativo para convergir para a solução ótima. O seu problema é que, mesmo sendo o melhor para problemas complexos, não é muito eficiente para redes muito grandes. Pois, foi observado que o tempo computacional requerido para otimizar é relativamente alto. Está técnica foi adotada por CARVALHO (2007) no modelo ótimo de redes hidráulicas.

Gomes *et al.* (2009b) apresentaram um método de dimensionamento ótimo de sistemas de distribuição de água chamado LENHSNET. O método proporciona como resposta ao dimensionamento, os diâmetros dos trechos da rede e a cota piezométrica da impulsão, de forma a alcançar o custo mínimo total do sistema, composto pela rede de tubulações e a energia de bombeamento. Os resultados mostraram a eficiência do modelo, apresentando-o como uma alternativa viável para o projeto ótimo de sistemas de distribuição de água.

A partir do início dos anos noventa do século passado, diversos modelos baseados em algoritmos evolucionários (AE) estão sendo empregados para o projeto ótimo de redes de distribuição de água (GOMES *et al.*, 2009b). Os AE representam um método eficiente de pesquisa para problemas não lineares que vem ganhando aceitação entre pesquisadores na área de Engenharia Hidráulica. Estes algoritmos são baseados na organização e/ou evolução de outras espécies vivas. Estes algoritmos não requerem suposições de linearidade, evitando instabilidades numéricas associadas a inversão de matrizes, além disso sua amostra é global, assim reduz a tendência de vir a ficar aprisionada em um local de mínimo relativo, perdendo a dependência de um ponto de partida. A principal motivação para aplicar algoritmos evolucionários para extração de resultados é que eles usam métodos de pesquisa altamente robustos e adaptáveis.

Dentre os algoritmos evolucionários, destaca-se o Algoritmo Genético, que é baseado na analogia que há entre o processo de otimização e os mecanismos de genética e os princípios da evolução natural das espécies. O AG foi proposto por Holland (1975) e popularizado por Goldberg (1989), sendo a primeira técnica heurística de base populacional a ser aplicada na otimização de redes de distribuição de água. Murphy e Simpson (1992) foram os primeiros a aplicar um algoritmo genético no dimensionamento de redes hidráulicas, seguido por Simpson et al. (1994). Este método tem sido aplicado correntemente para a otimização do planejamento, operação e dimensionamento de sistemas de distribuição de água (SAVIC e WALTERS, 1997; VAIRAVAMOORTHY e ALI, 2000; WU e WALSKI, 2012; RECA et al., 2007; CISTY, 2010; BAGIROV et al., 2013), dentre outros. Recentemente, diversos pesquisadores estão adotando esta metodologia combinada com outros métodos para o dimensionamento ótimo de sistemas de distribuição de água (DI PIERRO et al., 2009; HAGHIGHI et al., 2012). Differential Evolution é a técnica de base populacional mais recente (STORN e PRICE, 1997). Vasan e Simonovic (2010), Suribabu (2010) e Zhang et al. (2012) apresentaram bons resultados para o problema de otimização de sistemas de distribuição de água adotando a técnica Differential Evolution. MELIA et al. (2013) desenvolveu o Pseudo Algoritmo Genético (PGA), onde o código do cromossomo é executado utilizando codificação inteira, diferente de um tradicional AG. Cada decisão é representada por um único gene. Esta variação implica uma série de características especiais na definição de operações de mutação e de cruzamento. Algumas redes de referência foram utilizadas para testar a adequação da concepção do PGA numa rede de distribuição de água. Mais de 50.000 simulações foram conduzidas com diferentes conjuntos de parâmetros. Uma análise estatística das soluções encontradas mostraram, para cada caso, valores mais adequados de probabilidades de mutação e cruzamento. Os resultados encontrados validaram o método.

Outras técnicas heurísticas também têm sido aplicadas com sucesso para a otimização de sistemas de distribuição de água, como: *Simulated Annealing* (LOGANATHAN *et al.*, 1995), *Tabu Search* (LIPPAI *et al.*, 1999), *Harmony Search* (GEEM *et al.*, 2002), *Shuffled Frog Leaping Algorithm* (EUSUFF e LANSEY, 2003), *Ant Colony Optimization* (MAIER *et al.*, 2003; BAÑOS *et al.*, 2011); *Particle Swarm Optimization* (SURIBABU e NEELAKANTAN, 2006; EZZELDIN *et al.*, 2014), *Memetic Algorithm* (BAÑOS *et al.*, 2007; BAÑOS *et al.*, 2010), *Scatter Search* (LIN *et al.*, 2007; BAÑOS *et al.*, 2009), *Honey-Bee Mating Optimization* (SABBAGHPOUR *et al.*, 2013), *Genetic Heritage Evolution by Stochastic Transmission* (BOLOGNESI *et al.*, 2010), *Soccer League Competition* (MOOSAVIAN e ROODSARI, 2014), dentre outras.

Com base na revisão do estado da arte, conclui-se que a otimização de redes de distribuição de água tem recebido uma grande quantidade de atenção da comunidade de pesquisa ao longo das últimas décadas. Numerosos métodos heurísticos têm sido desenvolvidos e a maior parte destes obtiveram bons resultados, quanto aplicados nas redes exemplos de referência. Porém, alguns avanços são necessários. Segundo Corte e Sörensen (2013), os métodos atuais não são baseados em princípios metaheurísticos e os métodos desenvolvidos não são adequadamente testados. Como resultado, é provável que os métodos de otimização desenvolvidos não posssam ser aplicados com sucesso na otimização de problemas de otimização de sistemas reais de grande porte.

Outro fator que se destaca na maioria dos métodos disponíveis na literatura é a desconsideração dos custos operacionais com os bombeamentos. Estes custos são componentes importantes e precisam ser incorporadas nos problemas de otimização. Neste ponto, o LENHSNET (GOMES *et al.*, 2009b) avançou em relação a maioria das pesquisas, pois considera o custo com energia elétrica necessário para o bombeamento do sistema. Finalmente, o problema de otimização é descrito na literatura com todas as demandas constantes, o que não é o caso na realidade. Padrões de demanda devem ser criados para

refletir as variações que ocorrem durante o alcance do projeto. No entanto, ressalta-se que trabalhar com os padrões de demanda de água aumenta a complexidade computacional da otimização.

2.3.1 LENHSNET

O método LENHSNET (GOMES *et al.*, 2009b) é um algoritmo de dimensionamento ótimo de sistemas de distribuição de água, composto pela rede de abastecimento mais o dispositivo de impulsão (equipamento capaz de pressurizar uma rede – bombeamento, reservatório etc.). A metodologia do modelo compreende um processo dinâmico de cálculo, iterativo, associado ao modelo de simulação hidráulica EPANET, versão 2.00.12. O processo iterativo parte de uma solução inicial (de contorno), onde a rede de distribuição é composta, pelos diâmetros mínimos admitidos para o projeto em consideração. Esta solução inicial possui um custo mínimo de implantação da rede (configuração composta pelos diâmetros mínimos). No entanto, esta solução, geralmente, não é uma alternativa factível para o sistema, pois ela proporciona perdas de carga excessivas nos trechos, acarretando níveis insuficientes de pressão disponível nos nós da rede (GOMES *et al.*, 2009b).

Baseado na solução inicial, o processo de cálculo desenvolve iterativamente soluções que dependem da anterior. As soluções são obtidas pela substituição, a cada iteração, do diâmetro de um dos trechos, de forma a minimizar os custos adicionais proporcionais pelas alterações. O processo iterativo termina quando a configuração da rede e seus diâmetros atendem as restrições impostas pelo projeto (velocidade máxima nos tubos e/ou pressão mínima nos nós).

A mudança efetiva, em uma iteração, do diâmetro de um determinado trecho da rede, pelo seu superior, será definida em função do menor acréscimo de custo da rede pelo ganho de pressão proporcionado. O trecho a ser modificado será o que proporcionar o menor gradiente de custo correspondente ao nó mais desfavorável da rede, que será calculado a partir da Equação 7. O gradiente de custo "Gp", relativo a um determinado trecho, correspondente ao nó mais desfavorável. Ele representa o custo marginal do alívio de perda de carga na rede, proporcionado pela troca do diâmetro do trecho da rede pelo seu adjacente superior (GOMES *et al.*, 2009b).

Depois da possível solução ótima ser obtida, o próximo passo é verificar se as velocidades nos trechos estão dentro do limite máximo estabelecido. Se a velocidade for maior que a permitida, um novo diâmetro é calculado baseado na vazão do tubo. Depois de

definido o diâmetro do(s) trecho(s) com base na velocidade máxima e na vazão, a solução inicial para o modelo será alterada, com o restante dos trechos configurados com o diâmetro mínimo. O dimensionamento estará terminado quando a solução do processo iterativo não mais apresentar nenhuma linha de tubos com velocidade maior que a máxima estabelecida.

$$Gp = \frac{(C_2 - C_1)}{\Delta p} \tag{Eq. 7}$$

Onde: Gp = gradiente de custo, em unidades monetárias por ganhos de pressão no ponto mais desfavorável da rede (\mbox{mca}); C₁ = custo inicial, relacionado ao diâmetro atual (\mbox{s}); C₂ = custo do tubo com diâmetro imediatamente superior ao atual (\mbox{s}); Δp = ganho de pressão no nó mais desfavorável (m).

Este método lida com duas opções para o dimensionamento. Na primeira delas, a rede é abastecida por uma cota piezométrica fixa, num reservatório e a segunda o abastecimento é feito por meio de um reservatório com cota piezométrica variável. O custo total do sistema corresponde à implantação da rede. Na segunda alternativa, a água é diretamente lançada na rede ou ainda com um reservatório, porém com auxílio de uma estação elevatória e o custo total do sistema passa a ser calculado do custo total para implantação da rede mais o custo de energia elétrica para abastecer a estação elevatória. Nesse último caso, a carga necessária para a rede, que será alimentada a partir da estação, é uma variável de decisão a mais no processo de otimização. O fluxograma do algoritmo é apresentado na Figura 3.

No dimensionamento do sistema em que a rede é pressurizada através de uma estação elevatória, o método LENHSNET leva em conta o custo da energia de bombeamento, onde a altura manométrica na origem será uma variável a mais no processo de otimização. Neste caso, o processo de otimização dependerá, também, do custo de pressurização da água, que será considerado aqui mediante a grandeza denominada *gradiente energético*. O gradiente energético representa o custo anual, atualizado, de pressurização da água, por metro de elevação, e é dado pela Equação 8 (GOMES *et al.*, 2009b).

$$Ge = P_m \times T \times N_b \times F_a$$
 (Eq. 8)

Onde: Ge = gradiente energético anual atualizado (m); Pm = potência requerida pelo conjunto elevatório por metro de elevação (kW/m); Nb = número de horas de bombeamento anual; Fa = fator de atualização.

A potência requerida P, por metro de elevação de água, em kW/m, é dada pela Equação 9, onde Q é a vazão do sistema em m^3/s e η é o rendimento esperado do conjunto motor-bomba em decimais.

$$P = \frac{9,81 \times Q}{\eta}$$
(Eq. 9)

No dimensionamento otimizado, com a cota na origem variável, o valor adotado desta cota, na solução inicial, será igual a zero.

Figura 3 - Fluxograma da metodologia do LENHSNET.

Fonte: SALVINO, 2009.

3 MATERIAIS E MÉTODOS

Esse estudo foi realizado utilizando o método LENHSNET para o dimensionamento ótimo dos modelos de abastecimento a serem comparados. Após o dimensionamento, foram realizadas simulações hidráulicas através do EPANET, com todos os parâmetros necessários ajustados para obter dados suficientes para a comparação desejada. Basicamente, foram estudados dois sistemas de abastecimento para um mesmo modelo de cidade hipotética, sendo o primeiro sistema de abastecimento com reserva e distribuição de água por gravidade e pressões mínimas na rede de 10 mca, como o adotado atualmente no Brasil, e o segundo sistema se assemelha ao modelo adotado em alguns países da Europa, como por exemplo Espanha, possuindo bombeamento direto com pressões mínimas na rede de 25 mca. Cada um dos sistemas é composto por edificações que possuem distribuição de água internamente similares aos de suas redes.

3.1 EDIFICAÇÕES

Para composição da cidade hipotética foram escolhidas edificações com 2, 5 e 20 pavimentos. Cada pavimento foi composto por 5 apartamentos, cada um com 5 habitantes. Para efeito de modelagem cada pavimento possui 3 metros de altura, com uma distância de 10 metros entre seus pontos de consumo (nós). O consumo per capita admitido foi 200 L/hab.dia, sendo assim encontrado, através da Equação 1, o consumo-base dos nós igual a 0,011574 L/s.

Para o sistema de distribuição de água com pressão mínima de 10 mca, somente as edificações de 2 pavimentos podem ser abastecidas diretamente pela rede. As edificações de 5 e 20 pavimentos possuem instalações que tem como função armazenar a água captada da rede de distribuição em reservatórios domiciliares enterrados; posteriormente essa água é conduzida, através de um sistema de bombeamento, para um reservatório elevado, chegando ao consumidor final por gravidade.

No caso onde o sistema de distribuição de água fornece uma pressão mínima de 25 mca na entrada da edificação, com alimentação direta sem reservação, não é suficiente para atender as edificações com 20 pavimentos. Nesse caso a edificação foi composta por um sistema de bombeamento próprio, *booster*. Um *booster* é uma bomba inserida em um trecho o objetivo de elevar a pressão disponível no setor seguinte. No caso da edificação, o *booster* adicionará a energia necessária para atender a todos os apartamentos da edificação.

3.1.1 Procedimentos para o dimensionamento das tubulações nas edificações

Para se executar um dimensionamento através do método LENHSNET, deve-se modelar a rede na interface do simulador EPANET, adicionar dados de projeto e das tubulações a serem consideradas nas redes.

Para a modelagem das edificações de 5 e 20 pavimentos com pressão mínima na entrada do edifício de 10 mca, foi colocado um reservatório de nível fixo (RNF) no topo da edificação, considerando seu nível da água igual a altura da edificação mais 6 metros. Sendo assim, 21 m para o edifício com 5 pavimentos (Figura 4), e 66 m para o de 20 pavimentos (Figura 5.a).

Figura 4 - Modelagem de edifício com 5 pavimentos do sistema com pressão mínima na entrada de 10 mca.

Fonte: própria.

A modelagem da edificação de 20 pavimentos com pressão mínima na entrada do edifício de 25 mca necessitou de um RNF, que representa o fornecimento direto da rede, com seu nível igual a 0 m (Figura 5.b). A ideia de se utilizar o RNF na origem da edificação é a de otimizar o *booster* com a opção de dimensionamento "Cota Variável", pois no final do dimensionamento das tubulações a metodologia encontrará uma relação custo-benefício para

a carga hidráulica necessária na origem e os diâmetros das tubulações. Como a pressão na entrada é conhecida (25 mca), então a diferença será atribuída ao *booster*.

Para fins de dimensionamento, devem-se considerar os coeficientes de maior consumo diário no ano e o maior consumo horário no dia, no cálculo das vazões requeridas nos nós. Foram admitidos os valores de 1,2 e 1,5 para k_1 e k_2 , respectivamente, para cada um dos sistemas de abastecimento de água. Sendo assim, o consumo base obtido de cada nó na edificação foi de 0,02083333 L/s.

Figura 5 - Modelagem de edifício com 20 pavimentos do sistema com pressão mínima na entrada de 10 mca (a) e 25 mca (b).

Fonte: própria.

Como dado do projeto foi, primeiramente, determinado se a cota piezométrica na origem das edificações era de nível fixo ou variável. Para o caso em que a pressão mínima na entrada dos edifícios é de 10 mca, a cota foi considerada de nível fixo, com pressão mínima nos nós de 5mca, já que neste caso existe um reservatório elevado que atende, por gravidade,

todos os apartamentos. Para o caso em que a pressão mínima na entrada dos edifícios é de 25 mca, a cota foi considerada de nível variável para se otimizar o *booster* com base no valor final da altura manométrica na entrada da edificação, tendo adotado os seguintes parâmetros:

- Vazão de projeto de 2,08 L/s, que representa a soma de todos os consumos nos nós;
- Pressão mínima de 5 mca;
- Rendimento do conjunto motor bomba de 75%. Esse rendimento leva em consideração as perdas mecânicas na própria bomba e as perdas elétricas no motor;
- Alcance de projeto de 20 anos;
- Tarifa de energia de 0,31782 R\$/kWh;
- Taxa de juros anual de 12%;
- Taxa de juros de energia de 6%;
- Horas de bombeamento de 24 h/dia, já que esse sistema não possui reserva de água;
- Cota do nível d'água na origem de 25 m.

O fator de atualização (Fa) e o gradiente energético (Ge) foram calculados, a partir da Equação 8, resultando respectivamente em 11,13 e 929,61 R\$/m.

As tubulações escolhidas para o dimensionamento das edificações (Tabela 1) são do tipo PVC, com diâmetros variando no intervalo de 20 e 50 mm, com rugosidade de 0,0015. Essa composição das tubulações com seus respectivos materiais e custos por metro foi utilizada em todas as edificações, e o custo foi determinado a partir de dados de orçamento solicitado ao fabricante Tigre em agosto de 2013.

Diâmetro (mm)	Rugosidade	Tipo	Custo (R\$/m)
20	0,0015	PVC	0,91
25	0,0015	PVC	1,29
32	0,0015	PVC	2,32
40	0,0015	PVC	3,94
50	0,0015	PVC	4,78

Tabela 1 - Dados dos tubos para dimensonamento das edificações.

Todos os dados e resultados do dimensionamento otimizado das edificações podem ser encontrados nos Apêndices A e B.
3.1.2 Procedimentos para simulação de redes nas edificações

Para as simulações serem bem sucedidas e apresentarem dados reais para o estudo, foram necessários alguns ajustes em suas modelagens após o dimensionamento.

Nos casos em que a pressão mínima na entrada da edificação é de 10 mca, o reservatório de nível fixo no topo da edificação era apenas para efeito de dimensionamento. Porém as instalações são compostas por um RNF enterrado, que capta e armazena água do sistema de abastecimento da cidade, sendo essa água posteriormente bombeada para um reservatório de nível variado (RNV) que abastece os consumidores finais por gravidade. Para que a bomba (B) possa trabalhar de forma constante com bombeamento para a parte superior do reservatório elevado, foi necessária, para fins de modelagem, a instalação de uma válvula sustentadora de pressão (V). O RNF possui seu nível da água igual a 0 m e a cota do RNV é de 21 m para a edificação de 5 pavimentos, e 66 m para o de 20 pavimentos (Figuras 6 e 7).

Fonte: própria.

Figura 7 - Ajustes na modelagem da edificação de 20 pavimentos do sistema com pressão mínima na entrada de 10 mca.

Além da cota, foi determinado para o RNV da edificação de 5 pavimentos: 1 m para a altura da água inicial, 0 m para altura da água mínima, 2 m para altura de água máxima e 2,53 m de diâmetro. Já para o RNV da edificação de 20 pavimentos foi determinado: 1 m para altura de água inicial, 0 m para altura de água mínima, 3 m para altura de água máxima e 5 m de diâmetro. Os volumes dos reservatórios foram calculados levando em consideração sua secção como circular, e com volume suficiente para abastecer as edificações considerando a parada de bombeamento no horário de pico.

No caso da edificação de 20 pavimentos com pressão mínima na entrada da edificação de 25 mca, também se fez necessário alterações na modelagem após o dimensionamento. O RNF teve seu nível de água alterado para 25 m, sendo essa a altura manométrica necessária para atender adequadamente os cinco primeiros pavimentos. Acima desse quinto pavimento foi introduzida uma bomba (B), com o objetivo de oferecer pressões suficientes para atender até o vigésimo pavimento (Figura 8).

Fonte: própria.

Para efeito de dimensionamento das redes se considera a situação mais desfavorável possível, porém para simulação da rede o consumo nos nós só precisa ser calculado levando em consideração o fator k_1 . Desse modo o novo consumo base dos nós encontrado foi 0,01388889 L/s.

Um Padrão de Consumo foi introduzido aos nós com a finalidade de se criar uma variação de consumo ao longo do dia (Figura 9), e curvas foram associadas às bombas considerando vazão e carga suficientes para atender cada uma das edificações (Figuras 10, 11 e 12).

Figura 9 - Padrão de consumo dos nós.

Editor de Curva		23
Identificador	Descrição Curva Bomba	
Tipo da Curva BOMBA 💌	Equação Carga = 33.33-68.03(Vazão)^2.00	
Vazão Carga 0.35 25 	30- 25- 20- 5- 0 0.1 0.2 0.3 0.4 0.5 0.6 Vazão (LPS)	
Abrir S	Salvar OK Cancelar <u>Aj</u> uda	

Fonte: própria.

Figura 11 - Curva da bomba da edificação de 20 pavimentos do sistema com pressão mínima na rede de 10 mca.

Editor de Curva	X		
Identificador	Descrição		
1	Curva Bomba		
Tipo da Curva	Equação		
	Carga = 93.33-10.1(Vazão)''2.00		
Vazão Carga. 1.52 70	90 80 70 (E) 60 90 70 (E) 60 90 70 1 20 10 0 1 2 Vazão (LPS)		
Abrir 5	Galvar OK Cancelar Ajuda		
	Fonte: própria.		

Figura 12 - Curva da bomba da edificação de 20 pavimentos do sistema com pressão mínima na rede de 25 mca.

Editor de Curva	Descrição
Identificador	Curva Bomba
Tipo da Curva	Equação
BOMBA	Carga = 54.67-5.616(Vazão)^2.00
Vazão Carga 1.56 41	 55 50 45 45 40 (j) 35 gh 30 j) 25 j) 25 j) 25 j) 25 j) 1 j) 2 j) 30 j) 2 j) 1 j) 2 j) 3 j) 2 j) 3 j) 1 j
Abrir	Salvar OK Cancelar Ajuda.

Fonte: própria.

3.1.3 Caracterização energética nas edificações

Para realizar a caracterização energética das edificações de 5 e 20 pavimentos com pressão mínima na entrada da edificação de 10 mca, foram necessárias três informações na simulação. A primeira foi informar o valor de 0,31782 R\$/kWh para o preço da energia; a segunda foi associar um padrão de preço de energia à bomba (Figura 13), já que o custo da tarifa varia no horário de ponta, tendo sido considerada sete vezes mais elevada entre as 18 e 21 horas; e a terceira foi introduzir um controle simples que realize a parada de funcionamento da bomba durante esse horário de ponta, de maneira que as edificações sejam abastecidas nesse intervalo apenas pelo RNV. Já para realizar a caracterização energética da edificação de 20 pavimentos com pressão mínima na entrada da edificação de 25 mca, foi necessário apenas adicionar o preço da energia e o padrão de preço de energia da bomba, já que não há parada de bombeamento.

Figura 13 - Padrão de preço de energia.

3.2 CIDADE HIPOTÉTICA

Para esse estudo foi adotada a cidade hipotética (Figura 14), desenvolvida no trabalho de Gomes et al. (2013). Essa cidade foi importada para o simulador EPANET e,

Fonte: própria.

posteriormente, foram implantados dois sistemas; sendo um com pressão mínima na rede de 10 mca onde a água é fornecida por gravidade; e o outro com pressão mínima na rede de 25 mca onde a água é fornecida por bombeamento direto.

Figura 14 - Representação esquemática da cidade hipotética.

Fonte: Gomes et al. (2013)

Foram distribuídas 132 edificações em cada cenário. Para quantificar cada tipo de edificação foram realizadas combinações considerando frações de 1/3, 2/3, 3/3 do número total de edificações (Tabela 2), considerando, também, populações maiores a cada combinação subsequente (Tabela 3). Essas combinações resultaram em oito cenários possíveis, e em cada cenário os tipos de edificações quantificados foram distribuídos aleatoriamente na rede.

Comária	Combinação de número de edificações			
Cenario —	2 pav.	5 pav.	20 pav.	TOTAL
1	132	0	0	132
2	88	44	0	132
3	44	88	0	132
4	0	132	0	132
5	44	44	44	132
6	0	88	44	132
7	0	44	88	132
8	0	0	132	132

Tabela 2 - Número de edificações dos cenários simulados.

Conómio	Combinação de número de habitantes			
Cenario	2 pav.	5 pav.	20 pav.	Total
1	6.600	0	0	6.600
2	4.400	5.500	0	9.900
3	2.200	11.000	0	13.200
4	0	16.500	0	16.500
5	2.200	5.500	22.000	29.700
6	0	11.000	22.000	33.000
7	0	5.500	44.000	49.500
8	0	0	66.000	66.000

Tabela 3 - Cenários adotados.

3.2.1 Procedimentos para o dimensionamento das tubulações nos cenários propostos

A cidade hipotética adotada foi importada para interface do simulador EPANET. Para um dimensionamento bem sucedido, se fez necessário acrescentar, em sua modelagem, um RNF no início da rede. Além disso, foram inseridos, para cada um dos cenários dos dois sistemas, o consumo-base dos nós, os dados de projeto e os dados das tubulações. Lembrando que para efeito de dimensionamento, assim como foi calculado nas edificações, foi considerado a situação mais desfavorável possível para se determinar os consumos dos nós, ou seja, para o cálculo se considerou os coeficientes k_1 e k_2 . Esse cálculo resultou em consumos de 0,21 L/s para edificações de 2 pavimentos, 0,52 L/s para edificações de 5 pavimentos e 2,08 L/s para edificações de 20 pavimentos.

Como dado do projeto foi, primeiramente, determinado a cota piezométrica na origem como variável. Sendo assim necessárias algumas informações para possibilitar o dimensionamento:

- Pressão mínima de acordo com o sistema;
- Vazão de projeto (soma de todos os consumos dos nós para cada cenário);
- Rendimento do conjunto motor bomba de 75%;
- Alcance de projeto de 20 anos;
- Tarifa de energia de 0,31782 R\$/kWh;
- Taxa de juros anual de 12%;
- Taxa de juros de energia de 6%;
- Horas de bombeamento de 24 h/dia para o sistema que não possui reserva de água, no caso o de pressão mínima de 25 mca; e 21 h/dia para o sistema que possui parada de bombeamento, no caso o de pressão mínima de 10 mca.
- Cota do nível d'água na origem igual a 0 m.

Como no dimensionamento das edificações, o fator de atualização (Fa) e o gradiente energético (Ge) foram calculados, a partir da Equação 8.

As tubulações escolhidas para o dimensionamento de todos os cenários estão na Tabela 4, com os diâmetros dos tubos, tipo PVC, variando entre 50 mm e 500 mm, e rugosidade 0,0015. Essa tabela foi baseada em dados fornecidos pela Caixa Econômica Federal (CAIXA, 2013) e pelo Sistema Nacional de Custos e Índices da Construção Civil (SINAP, 2013). Para os dados de diâmetros dos tubos que não foram obtidos nessas fontes, foi realizada uma projeção através da ferramenta linha de tendência do programa Excel.

Diâmetro		Custo (R\$/m)		
(mm)	Tubo	Assentamento	Escavação/Reaterro	Total
50	15,20	0,82	11,62	27,64
75	27,63	1,10	11,36	40,09
100	44,10	1,38	12,35	57,83
150	89,54	1,65	18,08	109,27
200	152,39	1,93	28,81	183,13
250	231,88	2,21	44,54	278,63
300	327,98	2,76	65,27	396,01
350	444,83	3,04	91,00	538,87
400	575,94	4,39	121,73	702,06
500	889,15	4,86	198,19	1092,20

Tabela 4 - Custo para implantação de tubulações.

Todos os dados e resultados do dimensionamento otimizado dos cenários adotados para cidade hipotética podem ser encontrados nos Apêndices C e D.

3.2.2 Procedimentos para simulação dos cenários

Para a simulação dos sistemas, foram necessárias algumas mudanças nas modelagens. Primeiramente, o consumo base dos nós foi recalculado considerando apenas o fato k_1 , porque só se faz necessário considerar a situação mais desfavorável no dimensionamento. Os novos consumos encontrados foram de 0,14 L/s para edificações de 2 pavimentos, 0,35 L/s para edificações de 5 pavimentos e 1,39 L/s para edificações de 20 pavimentos. Após essa mudança, os casos dos dois sistemas foram simulados para obtenção das vazões de projeto. Posteriormente, foi adicionado nos nós o mesmo padrão de consumo, que representa a variação no consumo de água ao longo do dia, utilizado nas simulações das edificações (Figura 9). Nos cenários do sistema com pressão mínima na rede de 10 mca, foi inserida, após o RNF, uma bomba (B) que conduz a água para um RNV, que por sua vez distribui, por gravidade, para todos os pontos de consumo da cidade hipotética. Após o dimensionamento, o LENHSNET calculou uma cota para o RNF inicial conforme metodologia de dimensionamento de cota variável, porém para a simulação o valor dessa cota é transferido para a cota do RNV já que esse valor representa a carga hidráulica necessária para atender a rede com a pressão mínima especificada, e posteriormente a cota do RNF foi zerada para a inclusão do sistema de bombeamento (Figura 15). Além da cota do reservatório de nível variado, foram determinados 2 m para a altura da água inicial, 0 m para altura da água mínima e 5 m para altura da água máxima. Já para o cálculo do diâmetro desse reservatório, foi necessário levar em consideração que o RNV é cilíndrico, sendo seu volume total de reservação igual a 1/3 do volume distribuído no dia de consumo máximo (TSUTIYA, 2006), e sua altura igual à máxima da água (Tabela 5). Foi introduzida também a curva da bomba (Figura 16), considerando a vazão como a de projeto e a carga como a soma da cota do RNV e sua altura.

Figura 15 - Ajustes na modelagem da cidade hipotética para os cenários com pressão mínima na rede de 10 mca.

Fonte: própria.

Cenário	Vazão (L/s)	Altura de água máxima (m)	Volume do reservatório (m ³)	Diâmetro do reservatório (m)
1	18,48	5,00	532,22	11,64
2	27,72	5,00	798,34	14,26
3	36,96	5,00	1064,45	16,46
4	46,20	5,00	1330,56	18,41
5	82,72	5,00	2382,34	24,63
6	91,96	5,00	2648,45	25,97
7	137,72	5,00	3966,34	31,78
8	183,48	5,00	5284,22	36,68

Tabela 5 - Cálculo dos diâmetros dos reservatórios.

Nos cenários do sistema com bombeamento direto, foi introduzida uma bomba entre o RNF e a rede (Figura 17). A vazão de projeto calculada após a mudança dos consumos foi utilizada como vazão da curva da bomba, e a altura manométrica de bombeamento fornecida pelo LENHSNET após o dimensionamento foi considerada como a carga da curva da bomba (Tabela 6 e Figura 18). Na Figura 17 podemos observar que a cota do reservatório de nível fixo é zerada para simular a captação do sistema de bombeamento direto.

Figura 17 - Ajustes na modelagem da cidade hipotética para os cenários com pressão mínima na rede de 25 mca.

Fonte: própria.

Cománia	Dados da curva da bomba	
Cenario	Vazão (L/s)	Carga (m)
1	27,72	36,13
2	41,36	43,24
3	55,00	36,97
4	68,64	40,90
5	124,08	35,45
6	137,72	36,17
7	206,58	30,86
8	275,88	32,31

Tabela 6 - Dados para a curva da bomba de cada cenário.

Figura 18 - Curva da bomba do Cenário 1 do sistema com pressão mínima na rede de 25 mca.

Fonte: própria.

3.2.3 Caracterização energética nos cenários

Para a caracterização energética de cada sistema foi necessário introduzir o valor do preço de energia de 0,31782 R\$/kWh, e o padrão de preço de energia (Figura 13) associado à bomba. Lembrando que para os cenários do sistema com pressão mínima de 10 mca, que possui reservação de água, foi determinado um controle simples de horário de parada de bombeamento, já que o sistema para de bombear entre as 18 e 21 horas (horário de ponta), onde o custo da energia é mais elevado.

4 RESULTADOS E DISCUSSÕES

Depois de realizadas as etapas necessárias para as simulações bem sucedidas dos dois sistemas a serem comparados, pôde-se verificar os dados resultantes das mesmas, e se certificar que os parâmetros desejados foram atendidos e representaram adequadamente cada situação.

4.1 EDIFICAÇÕES

Vale ressaltar que as edificações com o sistema de armazenamento de água em reservatório elevado e parada de bombeamento fazem parte dos cenários da rede da cidade hipotética com pressão mínima disponível de 10 mca. Já as edificações com bombeamento direto compõem os cenários da rede da cidade hipotética com pressão mínima disponível de 25 mca.

4.1.1 Análise de pressões disponíveis nos pontos de consumo

Foram verificadas as pressões disponíveis nos pontos de consumo das edificações para garantir o fornecimento de água adequado, segundo os parâmetros pré-definidos.

Para a edificação de 5 pavimentos, na qual a água é distribuída por gravidade, os pontos mais desfavoráveis são os mais próximos do reservatório elevado (Figura 19). As pressões desses nós variam ao longo do dia como, por exemplo, o nó "N1" que atingiu pressão máxima de 7,92 mca e mínima de 6,17 mca (Figura 20).

Assim como na edificação de 5 pavimentos, para a edificação de 20 pavimentos onde a água é distribuída por gravidade, os pontos mais desfavoráveis são os mais próximos do reservatório elevado (Figura 21). As pressões desses nós variam ao longo do dia como, por exemplo, o nó "N1" que atingiu pressão máxima de 7,98 mca e mínima de 6,56 mca (Figura 22).

Para o caso em que a edificação de 20 pavimentos é abastecida por bombeamento direto, os pontos mais desfavoráveis serão os imediatamente antes da inclusão do *booster*, e os mais distantes após sua inclusão (Figura 23). A variação de pressão, ao longo do dia, no nó N22 atingiu máxima de 9,97 mca e mínima de 9,52 mca (Figura 24), já no nó N97 atingiu máxima de 19,08 mca e mínima de 5,27 mca (Figura 25).

r onter propria

Figura 20 - Variação de pressão no nó 1 (N1), ao longo do dia, do edifício de 5 pavimentos com distribuição de água por gravidade.

Figura 21 - Pontos de consumo com pressões mais desfavoráveis na edificação de 20 pavimentos com distribuição de água por gravidade.

Figura 22 - Variação de pressão no nó 1 (N1), ao longo do dia, do edifício de 20 pavimentos com distribuição de água por gravidade.

Fonte: própria.

N97	N98	N99	N100	N10
N92	N93	N94	N95	N96
N87	N88	N89	N90	N91
N82	N83	N84	N85	N86
N77	N78	N79	N80	N81
N72	N73	N74	N75	N76
N67	N68	N69	N70	N71
N62	N63	N64	N65	N66
N57	N58	N59	N60	N61
N52	N53	N54	N55	N56
N47	N48	N49	N50	N5
N42	N43	N44	N45	N46
N37	N38	N39	N40	N4
N32	N33	N34	N35	N30
N27	N28	N29	N30	N3
N22	N23	N24	N25	N20
N17	N18	N19	N20	N2'
N12	N13	N14	N15	N1
N7	N8	N9	N10	N1
N2	N3	N4	N5	N6

Figura 23 - Pontos de consumo com pressões mais desfavoráveis na edificação de 20 pavimentos com bombeamento direto.

Fonte: própria.

RNF1

Figura 24 - Variação de pressão no nó 22 (N22), ao longo do dia, do edifício de 20 pavimentos com bombeamento direto.

Fonte: própria.

Figura 25 - Variação de pressão no nó 97 (N97), ao longo do dia, do edifício de 20 pavimentos com bombeamento direto.

Fonte: própria.

4.1.2 Análise de composição energética

Foram verificadas as vazões ao longo do dia, tanto consumidas quanto produzidas, para garantir o fornecimento de água adequado, dentro dos parâmetros adotados.

A simulação da edificação de 5 pavimentos, com parada de bombeamento no horário de ponta e atendendo a curva de demanda, resultou no balanço hídrico ilustrado na Figura 26. Observa-se que o consumo é superior a produção em alguns momentos do dia, isso pode ocorrer já que existe reserva de água para atender os consumidores. Pode-se observar que foi produzida uma vazão média de 0,40 L/s ao longo de 21 horas, já que a bomba para de funcionar entre as 18 e 21 horas, o que resultou em um volume bombeado diário de 30,24 m³. Também foi encontrado o consumo médio de 0,09 kWh/m³, o que traduz em um custo de 0,83 R\$/dia, ou seja, um custo de 302,95 R\$/ano de energia por edificação de 5 pavimentos. Utilizando as mesmas taxas de juros e energia aplicadas à rede de distribuição, o fator de atualização para os próximos 20 anos foi de 11,13. Finalmente, o custo energético atualizado das edificações de 5 pavimentos foi de R\$ 3.371,83.

Figura 26 - Balanço de vazão da edificação com 5 pavimentos com parada de bombeamento.

A edificação de 20 pavimentos, com parada de bombeamento no horário de ponta e atendendo a curva de demanda, resultou no balanço de vazão ilustrado na Figura 27. Pôde-se observar que foi produzida uma vazão média de 1,59 L/s ao longo de 21 horas, já que há a parada de bombeamento, o que resultou em um volume bombeado diário de 120,20 m³. Também foi encontrado o consumo de 0,25 kWh/m³, o que traduz um custo de 9,71 R\$/dia, ou seja, um custo de 3.544,15 R\$/ano de energia por edificação de 20 pavimentos. Utilizando as mesmas taxas de juros e energia aplicadas à rede de distribuição, o fator de atualização encontrado foi de 11,13. Finalmente, o custo energético atualizado das edificações de 20 pavimentos foi de R\$ 39.446,39.

Figura 27 - Balanço de vazão da edificação com 20 pavimentos com parada de bombeamento.

A edificação de 20 pavimentos, com bombeamento direto e atendendo a curva de demanda, resultou na produção de vazão ilustrada na Figura 28. Foi produzida uma vazão

média de 1,11 L/s ao longo de 24 horas, o que resulta em um volume bombeado diário de 95,83 m³. Como esse sistema é de bombeamento direto, só é produzida a vazão demandada no momento, como pode se observar na Figura 28, onde a linha de vazão produzida coincide com a consumida. Também foi encontrado o consumo de 0,17 kWh/m³, o que traduz em um custo diário de 8,74 R\$/dia, ou seja, um custo de 3.190,10 R\$/ano de energia por edificação de 20 pavimentos. Com o fator de atualização calculado igual a 11,13, obtém-se o custo energético atualizado das edificações de 20 pavimentos de R\$ 35.505,81.

Na Tabela 7 podem-se comparar os custos energéticos atualizados, para o alcance de projeto de 20 anos, das edificações com diferentes pressões disponíveis nas suas entradas. Observa-se que as edificações de 2 pavimentos das duas situações não apresentam custos, já que as pressões mínimas disponíveis são suficientes. No caso das edificações de 5 pavimentos, apenas a edificação com pressão mínima disponível na entrada de 10 mca é insuficiente, fazendo necessário o sistema complementar para atender todos seus pontos com pressão suficiente, apresentando assim um custo energético. A pressão é insuficiente nas edificações de 20 pavimentos, para os dois casos, observando que o sistema com reserva de água e parada no bombeamento representa maior custo do que o com bombeamento direto.

Esses custos mais elevados nas edificações, com pressão mínima disponível na entrada de 10 mca, ocorrem porque quando a água capitada da rede é armazenada em um reservatório enterrado, sua pressão é zerada, havendo assim um desperdício da energia. Já nas edificações com pressão mínima disponível na entrada de 25 mca, elas aproveitam a pressão disponível da rede e adicionam energia de pressão aos pontos mais elevados das instalações.

Figura 28 - Balanço de vazão da edificação com 20 pavimentos com bombeamento direto.

Fonte: própria.

Número de	Custo energético atualizado (R\$)		
pavimentos	Pressão mín. 10 mca	Pressão mín. 25 mca	
2	0,00	0,00	
5	3.371,83	0,00	
20	39.446,39	35.505,81	

Tabela 7 - Custo energético atualizado das edificações.

4.2 CIDADE HIPOTÉTICA

Foram analisadas duas redes aplicadas no mesmo modelo de cidade. Uma rede é abastecida por gravidade e possui pressões mínimas disponíveis de 10 mca, já a outra rede é abastecida por bombeamento direto e possui pressões mínimas disponíveis de 25 mca.

4.2.1 Análise de pressões disponíveis nos pontos de consumo

Nas simulações de todos os cenários para as condições impostas, foi observado que o nó mais desfavorável na cidade hipotética foi o N1 (Figura 29), já que apresentou as menores pressões ao longo do dia. Nas Tabelas 8 e 9 estão as pressões mínimas e máximas atingidas por esse nó para cada cenário, ao longo do dia, observando que foram fornecidas pressões suficientes para atender os critérios estabelecidos no trabalho.

Figura 29 - Ponto de consumo com pressão mais desfavorável na cidade hipotética.

Fonte: própria.

Cenário	Pressão mínima (mca)	Pressão máxima (mca)
1	12,66	24,39
2	12,80	31,19
3	12,92	25,76
4	12,84	28,86
5	13,09	24,02
6	13,06	25,12
7	13,20	20,05
8	13,24	22,11

Tabela 8 - Pressões mínimas e máximas no N1 para os cenários do sistema com pressão mínima de 10 mca.

Tabela 9 - Pressões mínimas e máximas no N1 para os cenários do sistema com pressão mínima de 25

	inca.	
Carréate	Pressão	Pressão
Cenario	mínima (mca)	máxima (mca)
1	25,04	47,06
2	25,00	56,04
3	25,00	48,11
4	25,00	53,08
5	25,10	46,22
6	25,00	47,13
7	25,08	40,41
8	25,17	42,26

4.2.2 Análise de composição energética

Assim como nas edificações, foram verificadas as vazões ao longo do dia, tanto consumidas quanto produzidas, para garantir o fornecimento de água adequado, de acordo com os parâmetros adotados. Foi escolhido o Cenário 8 dos dois sistemas, por ser o mais desfavorável, para analisar suas vazões. Na Figura 30 observa-se que o sistema com parada de bombeamento no horário de ponta e atendendo a curva de demanda, resultou em uma vazão média de 213,37 L/s ao longo de 21 horas, já que há a parada de bombeamento, o que resultou em um volume bombeado diário de 16.130,77 m³. Também foi encontrado o consumo de 0,08 kWh/m³, o que traduz um custo diário de R\$ 382,16, ou seja, um custo de 139.288,40 R\$/ano de energia. Utilizando o fator de atualização de 11,13, finalmente, o custo energético atualizado do sistema com pressão mínima de 10 mca é de R\$ 1.552.505,89.

Figura 30 - Balanço de vazão do Cenário 8 do sistema com parada de bombeamento no horário de ponta.

Na Figura 31 observa-se que o sistema com bombeamento direto e atendendo a curva de demanda, resultou em uma vazão média de 185,77 L/s ao longo de 24 horas, o que resultou em um volume bombeado diário de 16.050,53 m³. Também foi encontrado o consumo de 0,14 kWh/m³, o que traduz um custo diário de R\$ 1.215,61, ou seja, um custo de 443.697,65 R\$/ano de energia. Utilizando o fator de atualização de 11,13, finalmente, o custo energético atualizado do sistema com pressão mínima de 25 mca é de R\$ 4.938.354,85.

Fonte: própria.

Na Tabela 10 podem-se comparar os custos energéticos atualizados, para o alcance de projeto de 20 anos, dos oito cenários para os sistemas com pressões mínimas de 10 mca e 25 mca. Observa-se que os custos de bombeamento dos cenários com pressão mínima de 25 mca são bem mais elevados, porque como sua pressão mínima é bem superior ao outro sistema, a

carga manométrica de bombeamento dos cenários serão bem maiores, levando a maiores gastos de energia no bombeamento.

Contrib	Custo energético da cidade atualizado (R\$)				
Cenario	Pressão mín. 10 mca	Pressão mín. 25 mca			
1	180.210,28	427.857,23			
2	336.005,24	995.625,25			
3	367.732,97	1.133.911,04			
4	516.784,26	1.567.090,09			
5	764.390,59	2.440.638,71			
6	890.164,04	2.766.731,57			
7	1.051.280,81	3.537.297,09			
8	1.552.505,89	4.938.354,85			

Tabela 10 - Custo energético dos cenários para os sistemas com pressões mínimas de 10 mca e 25 mca.

4.3 CUSTOS TOTAIS

Para a comparação dos sistemas foi considerado o custo total que é a soma do custo de implantação e operação da rede da cidade mais o custo energético do total de edificações. O custo de implantação das edificações foi desprezado, pois foram consideradas as mesmas instalações prediais para os sistemas com pressões mínimas de 10 mca e 25 mca.

Após realizado o dimensionamento dos cenários, pode-se observar na Tabela 11 que os custos de implantação de todos os cenários com pressão mínima de 25 mca foram mais elevados. Quanto maior for a pressão mínima exigida no dimensionamento, maiores serão os custos de implantação.

Cenário	Custo de implantação (R\$)				
	Pressão mínima 10 mca	Pressão mínima 25 mca			
1	1.078.358,70	1.091.618,40			
2	1.143.369,55	1.151.357,60			
3	1.413.191,05	1.432.435,65			
4	1.491.524,50	1.496.449,75			
5	2.281.956,40	2.290.176,85			
6	2.332.874,20	2.395.196,35			
7	3.806.259,20	3.850.095,30			
8	4.015.318,35	4.302.050,00			

Tabela 11 - Custo de implantação do sistema de abastecimento de água para cenários da cidade com pressão mínima de 10 mca e 25 mca.

Para o edifício de 5 pavimentos do sistema com pressão mínima na rede de 10 mca foi encontrado o custo atualizado de R\$ 3.371,83, já para o edifício de 20 pavimentos desse mesmo sistema o custo atualizado foi de R\$ 3.544,15. Para o edifício de 20 pavimentos do sistema com pressão mínima na rede de 25 mca foi encontrado o custo atualizado de R\$ 3.190,10. Na Tabela 12 pode-se observar o custo de energia atualizado do total das edificações de cada cenário. Verificou-se que os cenários do sistema com pressão mínima de 10 mca e distribuição de água por gravidade representaram custos de energia de operação do total das edificações mais altos, já que a partir da edificação de 5 pavimentos ele já precisa de sistema de bombeamento.

Tabela 12 - Custo atua	alizado de energia	do total das	s edificações	nos cenários	dos sistemas	com pressão
mínima de 10 mca e 25 mca.						

Cenário	Quantidade de edificações			Custo energético das edificações atualizado		
	2 pav.	5 pav.	20 pav.	Pressão mín. 10 mca	Pressão mín. 25 mca	
1	132	0	0	0,00	0,00	
2	88	44	0	148.360,67	0,00	
3	44	88	0	296.721,35	0,00	
4	0	132	0	445.082,02	0,00	
5	44	44	44	1.884.001,81	1.562.255,77	
6	0	88	44	2.032.362,49	1.562.255,77	
7	0	44	88	3.619.642,95	3.124.511,54	
8	0	0	132	5.206.923,41	4.686.767,37	

Na Tabela 13 pode-se verificar o custo total de cada cenário para cada sistema. Observa-se que o sistema com pressão mínima de 25 mca e bombeamento direto representa maior custo em todos os cenários estudados. Na Figura 32, no primeiro cenário os custos estão próximos e a medida que a cidade cresce, pelo processo de verticalização, essa diferença aumenta. Os crescimentos foram mais acentuados quando as edificações de 20 pavimentos foram incrementadas no modelo. Em síntese, para todos os casos, o sistema de distribuição com bombeamento direto e pressões mínimas de 25 mca sempre ficou acima do sistema com reservação nas edificações e com pressões mínimas de 10 mca.

	Custo total de sistemas (R\$)			
Cenário	Pressão mínima 10 mca	Pressão minima 25 mca		
1	1.258.568,98	1.519.475,63		
2	1.627.735,46	2.146.982,85		
3	2.077.645,37	2.566.346,69		
4	2.453.390,79	3.063.539,84		
5	4.930.348,80	6.293.071,33		
6	5.255.400,73	6.724.183,70		
7	8.477.182,96	10.511.903,93		
8	10.774.747,66	13.927.172,16		

Tabela 13 - Custo total dos cenários com sistemas de abastecimento com pressão mínima de 10 mca e 25 mca.

Figura 32 - Gráfico de comparação do custo total dos cenários com sistemas de abastecimento com pressão mínima de 10 mca e 25 mca.

Fonte: própria.

5 CONCLUSÕES E RECOMENDAÇÕES

A pesquisa propôs fazer um estudo comparativo dos custos de implantação e energético entre sistemas de distribuição de água com pressão mínima de 10 mca e 25 mca, somado com as parcelas das edificações referentes a cada tipo de sistema.

Modelou-se no simulador hidráulico EPANET um sistema de distribuição de água para uma cidade hipotética. Foram criados 8 cenários, considerando um crescimento da verticalização da cidade, compostos por edificações de 2, 5 e 20 pavimentos. Posteriormente, foram implantados dois sistemas em cada cenário: um com pressões mínimas de 10 mca e distribuição de água por gravidade; e o outro com pressões mínimas de 25 mca e distribuição de água por bombeamento direto. As edificações, que compõe cada cenário, distribuem água para seus consumidores finais de forma semelhante ao sistema de sua cidade. Para o dimensionamento das tubulações, tanto das edificações como das redes da cidade, foi utilizado o modelo de otimização LENHSNET (GOMES *et al*, 2009 b). Posteriormente, foram acrescentadas todas as características necessárias para fazer a simulação no EPANET, e finalmente coletar os dados desejados.

O modelo LENHSNET se mostrou bastante eficiente no objetivo de otimizar as redes, a partir de uma tabela de tubos e parâmetros de projeto escolhidos pelo próprio operador. Nesse estudo, a metodologia de dimensionamento se apresentou como essencial para a determinação da rede mais eficiente possível. Já o simulador hidráulico EPANET, além de ser a interface que o LENHSNET opera, foi efetivo para a simulação das redes otimizadas, permitindo a inserção de todos os aspectos necessários e executando simulações bem sucedidas. Mais importante ainda, esse simulador foi capaz de gerar dados como a quantidade de energia consumida para o atendimento da rede, dentro dos parâmetros escolhidos e a representação do custo desse consumo.

O estudo considerou como custos totais, a soma do custo de implantação e operação das redes de cada cenário, somado com a parcela do custo energético das instalações hidráulicas das edificações. Os custos de implantação de todos os cenários com pressão mínima de 25 mca foram mais elevados, pois maiores pressões exigidas resultaram em custos mais elevados com as tubulações. O custo energético do total das edificações de cada cenário do sistema com pressão mínima de 10 mca e distribuição de água por gravidade foram mais elevados, pois essa pressão mínima só foi suficiente para atender as edificações de 2 pavimentos, precisando de acréscimo energético para os edifícios de 5 e 20 pavimentos. Já o custo energético dos cenários da cidade hipotética com pressão mínima de 25 mca foram mais

elevados, porque como sua pressão mínima é superior ao outro sistema, a carga manométrica de bombeamento dos cenários foram maiores, o que levou a maiores gastos de energia no bombeamento. Com a soma das parcelas dos custos, foi verificado que o sistema com pressão mínima de 25 mca e bombeamento direto representa maior custo total em todos os cenários estudados.

Recomenda-se para estudos futuros avaliar qual seria a melhor alternativa de pressão disponível, forma de alimentação, reservação de água e parada de bombeamento, de forma a abastecer a rede continuamente com menores custos. Recomenda-se, ainda, aplicar essa metodologia de avaliação dos custos energéticos em outras redes, em especial, as redes reais com propostas de reabilitação e estudo de viabilidade econômica.

REFERÊNCIAS

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Conjuntura dos Recursos Hídricos no Brasil: 2013. Ministério do Meio Ambiente. Brasília: Engecorps/Cobrape, 2013. 432 p.

ALPEROVITS, E.; SHAMIR, U. Design of Optimal Water Distribution Systems. Water Resources Research, v. 13, p. 885-900, 1977.

ANAGNOSTOPOULOS, J. S.; PAPANTONIS, D. E. Pumping Station Design for a Pumped-Storage Wind-Hydro Power Plant. **Energy Conversion and Management**, v. 48, p. 3009-3017, novembro 2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 12218: Projeto de Rede de Distribuição de Água para Abastecimento Público. Rio de Janeiro, 1994.

BAÑOS, C.; GIL, C.; AGULLEIRO, J.; RECA, J. A Memetic Algorithm for Water Distribution Network Design. In: Soft Computing in Industrial Applications (Advances in Soft Computing Series), v. 39, p. 279-289, 2007.

BAÑOS, R.; GIL, C.; RECA, J.; MARTÍNEZ, J. Implementation of Scatter Search for Multi-Objective Optimization: A Comparative Study. **Computational Optimization and Applications**, v. 42, p. 421-441, 2009.

BAÑOS, R.; GIL, C.; RECA, J.; MONTOYA, F. G. A Memetic Algorithm Applied to the Design of Water Distribution Networks. **Applied Soft Computing**, v. 10, p. 261–266, 2010.

BAÑOS, R.; GIL, C.; ORTEGA, J.; MÁRQUEZ, A. L.; FERNÁNDEZ, A.; MONTOYA, M. G. Ant Colony Optimization for Water Distribution Network Design: A Comparative Study. In: International Work-Conference on Artificial Neural Networks, 11. Espanha, 2011.

BAGIROV, A. M.; BARTON, A. F.; MALA-JETMAROVA, H.; NNUAIMAT, A.; AHMEDA, S. T.; SULTANOVA, N.; YEARWOODA, N. An Algorithm for Minimization of Pumping Costs in Water Distribution Systems Using a Novel Approach to Pump Scheduling. **Mathematical and Computer Modelling**, v. 57, p. 873–886, 2013.

BOLOGNESI, A.; BRAGALLI, C.; MARCHI, A.; ARTINA, S. Genetic Heritage Evolution by Stochastic Transmission in the Optimal Design of Water Distribution Networks. Advances in Engineering Software, v. 41, p. 792-801, maio 2010.

BRASIL. **Lei** n°. **9.991**, de 24 de julho de 2000. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/19991.htm>. Acesso em: 5 abr. 2014.

BRASIL. **Lei n°. 10.295**, de 17 de outubro de 2001. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/leis_2001/L10295.htm>. Acesso em: 5 abr. 2014.

CARVALHO, P. S. O. "EficientE" - Um Método de Dimensionamento Econômico para Redes de Distribuição de Água. 128p. Dissertação (Mestrado em Engenharia Urbana), Centro de Tecnologia, UFPB, João Pessoa, 2007.

CASTRO, M. A. H. Uso Conjunto do AUTOCAD e do EPANET para Projeto, Simulação e Dimensionamento de Redes de Abastecimento de Água. In: Seminário Hispano-Brasileiro sobre Sistemas de Abastecimento Urbano de Água, 4. João Pessoa: UFPB, 2004. CISTY, M. Hybrid Genetic Algorithm and Linear Programming Method for Least-Cost Design of Water Distribution Systems. Water Resour Manage, v. 24, p 1-24, janeiro 2010.

CORTE, A.; SÖRENSEN, K. Optimisation of Gravity-Fed Water Distribution Network Design: A Critical Review. **European Journal of Operational Research**, v. 228, p 1-10, 2013.

DI PIERRO, F.; KHU, S. T.; SAVIC, D.; BERARDI, L. Efficient Multi-Objective Optimal Design of Water Distribution Networks on a Budget of Simulations Using Hybrid Algorithms. **Environmental Modelling & Software**, v. 24, p. 202–213, fevereiro 2009.

DUAN, N.; MAYS, L. W.; LANSEY, K. E. Optimal Reliability-Based Design of Pumping and Distribution Systems. Journal of Hydraulic Engineering, v.116, p. 249–268, 1990.

EUSUFF, M. M.; LANSEY, K. E. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. Journal of Water Resources Planning and Management, v. 129, p. 210-225, maio 2003.

EZZELDIN, R.; DJEBEDJIAN, B.; SAAFAN, T. Integer Discrete Particle Swarm Optimization of Water Distribution Networks. Journal of Pipeline Systems Engineering and Practice, v. 5, p. 57-67, fevereiro 2014.

FERNANDES, N.; MARQUES, G. Integration of Gis and Hydraulic Modeling to Evaluate the Cost of Ecological Stream Flow Recovery in Irapé Dam, Brazil. In: World Environmental and Water Resources Congress, 2011, California, USA. p. 4162-4171.

GEEM, Z. W.; KIM, J. H.; LOGANATHAN, G. V. Harmony Search Optimization: Application to Pipe Network Design. **International Journal of Modelling & Simulation**, v. 22, p. 125-133, 2002.

GESSLER, J. **Pipe network optimization by enumeration**. In: Computer Applications in Water Resources, p. 572–581, 1985.

GOLDBERG, D. E. Genetic Algorithms: In Search, Optimization, and Machine Learning. 1^a edição. Addison-Wesley Publishing Co. Bostom, MA, USA, 1989. 412 p.

GOMES, H. P. Sistema de Abastecimento de Água: Dimensionamento Econômico e Operação de Redes e Elevatórias. 3ª edição (Revisada e Ampliada). João Pessoa: UFPB, 2009a. 277 p.

GOMES, H. P; BEZERRA, S. T., OLIVEIRA, P. S.; SALVINO, M. M. Optimal Dimensioning Model of Water Distribution Systems. **Water SA** (Online), v. 35, julho 2009b.

GOMES, H. P.; CARVALHO, P. S. O. Manual de Sistemas de Bombeamento: Eficiência Energética. João Pessoa: UFPB, 2012. 189 p.

GOMES, H. P.; FORMIGA, K. T. M. PNL2000: Método Prático de Dimensionamento Econômico de Redes Malhadas de Abastecimento de Água. **Revista Brasileira de Recursos Hídricos – RBRH**, Porto Alegre, v. 6, p. 91-108, 2001.

GOMES, H. P.; ROIG, J. M.; REY, P. L. I.; ROCHA, N. B. S.; SALVINO, M. M. Eficiência energética de sistemas de abastecimento de água para diferentes pressões nas entradas das edificações. In: Simpósio Iberoamericano sobre Planificación de Sistemas de Abastecimento y Drenaje, 12, 2013, Buenos Aires.

GÓMEZ, F. G.; ESPIÑEIRA, R. M.; VALIÑAS, M. A.; RUBIO, M. A. G. Explanatory Factors of Urban Water Leakage Rates in Southern Spain. **Utilities Policy**, v.22, p. 22-30, setembro 2012.

GOUVEIA, R. M. M. Modelo computacional de otimização para dimensionamento de redes de distribuição de água abastecidas por múltiplos bombeamentos. 182 p. Tese (Doutorado em Engenharia Mecânica), Departamento de Engenharia Mecânica, Universidade Federal da Paraíba, João Pessoa, 2012.

HAGHIGHI, A.; SAMANI, H. V.; SAMANI, Z. M. V. GA-ILP Method for Optimization of Water Distribution Networks. **Water Resources Management**, v. 25, p. 1791-1808, abril 2012.

HOLLAND, J. H. Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press, 1975.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Censo 2010**. Dsiponível em: http://censo2010.ibge.gov.br. Acesso em: 10 dez. 2013, 16:30.

JANSEN, L.; PADE, J. Global Unique Solvability for a Quasi-Stationary Water Network Model, 2013. Disponível em: http://www.math.hu-berlin.de/>. Acesso em: 14 jun. 2014, 15:20.

KOPPEL, T.; VASSILJEV, A. Calibration of water distribution network for BWCN. In: Water Distribution Systems Analysis. p. 1599-1609, 2011.

LANSEY, K. E.; MAYS, L. W. Optimal Reliability-Based Design of Pumping and Distribution Systems. Journal of Water Resources Planning and Management, v. 116, p. 249-268, 1990.

LIN, M. D.; LIU, Y. H.; LIU, G. F.; CHU, C. W. Scatter Search Heuristic for Least-Cost Design of Water Distribution Networks. **Engineering Optimization**, v. 39, p. 857–876, 2007.

LIPPAI, I.; HEANEY, J. P.; LAGUNA. M. Robust Water System Design With Commercial Intelligent Search Optimizers. Journal of Computing in Civil Engineering, v. 13, p. 135-143, 1999.

LOGANATHAN, G. V.; GREENE, J. J.; AHN, T. J. Design Heuristic for Globally Minimum Cost Water Distribution Systems. **Journal of Water Resources Planning and Management**, v. 121, p. 182–192, 1995.

LOUBSER, B. F.; GESSLER, J. Computer-Aided Optimization of Water Distribution Networks. **The Civil Engineer of South Africa**, v. 32, p. 413–422, outubro 1990.

MACKNICK, J.; NEWMARK, R.; HEATH, G.; HALLET, KC. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. National Renewable Energy Laboratory. Colorado, 2011.

MAIER, H. R.; SIMPSON, A. R.; ZECCHIN, A. C.; FOONG, W. K.; PHANG, K. Y.; SEAH, H. Y.; TAN, C. L. Ant Colony Optimization for Design of Water Distribution Systems. Journal of Water Resources Planning and Management, v. 129, p. 200–209, 2003.

McILROY, M. S. Direct Reading Electric Analyzer for Pipeline Networks. Journal of the American Water Works Association, v. 42, p. 347-365, 1950.

MELIA, D. M.; REY, P. L. I.; SOLANO, F. J. M.; MIGUEL, V. S. F. Design of Water Distribution Networks Using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators. **Water Resources Management**, v. 27, p. 4149-4162, 2013.

MO, W.; WANG, R.; ZIMMERMAN, J. B. Energy–Water Nexus Analysis of Enhanced Water Supply Scenarios: A Regional Comparison of Tampa Bay, Florida, and San Diego, California. **Environmental Science and Technology**, v. 48, p. 5883-5891, abril 2014.

MOOSAVIAN, N.; ROODSARI, B. K. Soccer League Competition Algorithm: A Novel Meta-Heuristic Algorithm for Optimal Design of Water Distribution Networks. **Swarm and Evolutionay Computations**, v. 17, p. 14-24, agosto 2014.

MURPHY, L. J.; SIMPSON, A. R. Genetic Algorithms in Pipe Network Optimisation. Research Report R93. 53 p. Department of Civil Enginnering, University of Adelaide, Australia, 1992.

OLAIA, A. I. S. Gestão de Sistemas de Abastecimento de Água Através de Modelação Hidráulica. Dissertação (Mestrado), Universidade Nova de Lisboa, Portugal, 2012.

OLSSONN, G. Water and Energy: Threats and Opportunities. IWA Publishing. London, 2012, 300 p.

PELLI, T.; HITZ, H. U. Energy Indicators and Savings in Water Supply. Journal of the American Water Works Association, v. 92, p. 55-62, junho 2000.

PEREIRA, J. A. R.; CONDURÚ, M. T. Abastecimento De Água: Informação para Eficiência Hidroenergética. João Pessoa: UFPB, 2014. 127 p.

PROGRAMA NACIONAL DE EFICIÊNCIA ENERGÉTICA EM SANEMANTO AMBIENTAL (PROCEL SANEAR). **Plano de Ação PROCEL SANEAR 2006/2007**. Rio de Janeiro: Eletrobrás/PROCEL, 2005. 65 p.

QI, C.; CHANG, N. B. System Dynamics Modeling for Municipal Water Demand Estimation in an Urban Region Under Uncertain Economic Impacts. Journal of Environmental Management, v. 92, p. 1628-1641, junho 2011. RAMOS, H. Support Developments to Hydro-Pump-System Course from MSc Degree in Hydraulic and Water Resources. DE Civil: 2003.

RECA, J.; MARTÍNEZ, J.; GIL, C.; BAÑOS, R. Application of Several Meta-Heuristic Techniques to the Optimization of Real Looped Water Distribution Networks. **Water Resources Management**, v. 22, p. 1367–1379, 2007.

ROSSMAN, L. A. **EPANET 2: User's Manual**. Tradução de H. P. GOMES e M. M. SALVINO. Cincinnati: National Risk Management Research Laboratory, United States Environmental Protection Agency (EPA), 2000. 200 p. Traduzido pelo Laboratório de Eficiência Energética e Hidráulica em Saneamento da Universidade Federal da Paraíba (UFPB), Brasil, 2009.

SABBAGHPOUR, S.; MONSEF, H.; NAGHASHZADEGAN, M.; JAVAHERDEH, K.; HADDAD, O. B. Optimization of a Real Urban Water Network (Langarud City's Water Network) with the HBMO Algorithm. **Hydrol Current Res**, v. 4, junho 2013

SALVINO, M. M. Método de Dimensionamento e Controle Operacional Otimizado para Redes de Distribuição de Água. 62 p. Dissertação (Mestrado em Engenharia Mecânica), Centro de Tecnologia, UFPB, João Pessoa, 2009.

SANTHOSH, A.; FARID, A. M.; YOUCEF-TOUMI, K. **Optimal Network Flow for the Supply Side of the Energy-Water Nexus**. In: Intelligent Energy Systems (IWIES), 2013 IEEE International Workshop on, Vienna. p. 155-160.

SAVIC, D.; WALTERS, G. Genetic Algorithms for Least-Cost Design of Water Distribution Networks. Journal of Water Resources Planning and Management, v. 123, p. 67–77, 1997.

SHAMIR, U. Optimal Design and Operation of Water Distribution Systems. Water Resources Research, v. 10, p. 27–36, 1974.

SHEN, H.; McBEAN, E. Hydraulic Calibration for a Small Water Distribution Network. In: Water Distribution Systems Analysis, 12, 2010, Arizona, USA. p. 1545-1557.

SILVA, C. O. Modelagem e Calibração de Rede de Distribuição de Água com Ênfase no Controle de Perdas de Água. 99 p. Dissertação (Mestrado em Engenharia Civil e Ambiental), UFPB, João Pessoa, Brasil, 2014.

SILVA, J. H. F. **Exploração das Potencialidades do Programa EPANET na Simulação Hidráulica de Sistemas de Abastecimento de Água.** 76 p. Dissertação (Mestrado Integrado em Engenharia Civil), Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Portugal, 2008.

SIMPSON, A. R.; DANDY, G. C.; MURPHY, L. J. Genetic Algorithms Compared to Other Techniques for Pipe Optimization. Journal of Water Resources Planning and Management, v. 120, p. 423–443, 1994.

SISTEMA NACIONAL DE PESQUISA DE CUSTOS E ÍNDICES DA CONSTRUÇÃO CIVIL (SINAP). **Preços de insumos**. João Pessoa: novembro de 2013. Disponível em:

http://www1.caixa.gov.br/gov/gov_social/municipal/programa_des_urbano/SINAPI/relatori o_insumos.asp>. Acesso em: 8 nov. 2013, 15:00.

SISTEMA NACIONAL DE INFORMAÇÕES SOBRE SANEAMENTO (SNIS). **Diagnóstico dos serviços de água e esgotos - 2014.** 164 p. Ministério das Cidades - Secretaria Nacional de Saneamento Ambiental, Brasília, 2014.

STOKES, J.; HORVATH, A. Life Cycle Energy Assessment of Alternative Water Supply Systems (9pp). The International Journal of Life Cycle Assessment, v. 11, p. 335–343, 2006.

STORN, R.; PRICE, K. Differential Evolution: a Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces. Journal of Global Optimization, v. 11, p. 341–359, 1997.

SURIBABU, C. R. Differential Evolution Algorithm for Optimal Design of Distribution Networks. Journal of Hydroinformatics, v. 12, p. 66-82, 2010.

SURIBABU, C. R.; NEELAKANTAN, T. R. Design of Water Distribution Networks Using Particle Swarm Optimization. Urban Water Journal, v. 3, p. 111-120, 2006.

SURYAPRAKASAM, M. V.; REID, G. W.; GEYER, J. C. Use of Alternating Current Network Calculator in Distribution Systems Design. Journal of the American Water Works Association, p. 1154-1164, 1950.

TSUTIYA, M. T. **Abastecimento de Água**. 3^a edição. São Paulo: Departamento de Engenharia Hidráulica e Sanitária Escola Politécnica da Universidade de São Paulo, 2006. 643 p.

VAIRAVAMOORTHY, K.; ALI, M. Optimal Design of Water Distribution Systems Using Genetic Algorithms. **Computer-Aided Civil and Infrastructure Engineering**, v. 15, p. 374–382, 2000.

VASAN, A.; SIMONOVIC, S. P. Optimization of Water Distribution Network Design Using Differential Evolution. Journal of Water Resources Planning and Management, v. 136, p. 279–287, 2010.

WANG, J. Y.; CHANG, T. P.; CHEN, J. S. An Enhanced Genetic Algorithm For Bi-Objective Pump Scheduling In Water Supply. **Expert Systems with Applications**, v. 36, p. 249-258, 2009.

WU, Z.; WALSKI, T. Effective Approach for Solving Battle of Water Calibration Network Problem. **Journal of Water Resources Planning and Management**, v. 138, p. 533-542, 2012.

ZHANG, W. W.; YU, G. P.; BAI. M. S. Calibration of Hydraulic Model in Real-Life Water Distribution System. **Applied Mechanics and Materials**, v. 155-156, p. 285-290, 2012.

APÊNDICE A

Dados e Resultados dos Dimensionamentos das Edificações com 5 e 20 Pavimentos com Pressão Mínima na Entrada da Edificação de 10 mca

Edifício de 5 pavimentos com pressão mínima de 10 mca							
Trecho	Início	Fim	Comprimento	Diâmetro			
ID:	Nó:	Nó:	(m)	(mm)			
2	2	1	10	20			
3	3	2	10	20			
4	N3	4	10	20			
5	4	5	10	20			
7	7	6	10	20			
8	8	7	10	20			
9	8	9	10	20			
10	9	10	10	20			
12	12	11	10	20			
13	13	12	10	20			
14	13	14	10	20			
15	14	15	10	20			
17	17	16	10	20			
18	18	17	10	20			
19	18	19	10	20			
20	19	20	10	20			
22	22	21	10	20			
23	23	22	10	20			
24	23	24	10	20			
25	24	25	10	20			
6	3	8	3	20			
11	8	13	3	20			
16	13	18	3	20			
21	18	23	3	20			
1	RNV1	3	6	25			
26	27	RNV1	51	50			
B1	RNF2	26	#N/A	#N/A Bomba			
V1	26	27	#N/A	50 Válvula			
Edifíci	o de 20 p	oavimen	tos com pressão m	ínima de 10 mca			
---------	-----------	---------	-------------------	-----------------			
Trecho	Início	Fim	Comprimento	Diâmetro			
ID:	Nó:	Nó:	(m)	(mm)			
2	2	1	10	20			
3	3	2	10	20			
4	3	4	10	20			
5	4	5	10	20			
7	7	6	10	20			
8	8	7	10	20			
9	8	9	10	20			
10	9	10	10	20			
12	12	11	10	20			
13	13	12	10	20			
14	13	14	10	20			
15	14	15	10	20			
17	17	16	10	20			
18	18	17	10	20			
19	18	19	10	20			
20	19	20	10	20			
22	22	21	10	20			
23	23	22	10	20			
24	23	24	10	20			
25	24	25	10	20			
27	27	26	10	20			
28	28	27	10	20			
29	28	29	10	20			
30	29	30	10	20			
32	32	31	10	20			
33	33	32	10	20			
34	33	34	10	20			
35	34	35	10	20			
37	37	36	10	20			
38	38	37	10	20			
39	38	39	10	20			
40	39	40	10	20			
42	42	41	10	20			
43	43	42	10	20			
44	43	44	10	20			
45	44	45	10	20			
47	47	46	10	20			
48	48	47	10	20			
49	48	49	10	20			
50	49	50	10	20			
52	52	51	10	20			

53	53	52	10	20
54	53	54	10	20
55	54	55	10	20
57	57	56	10	20
58	58	57	10	20
59	58	59	10	20
60	59	60	10	20
62	62	61	10	20
63	63	62	10	20
64	63	64	10	20
65	64	65	10	20
67	67	66	10	20
68	68	67	10	20
69	68	69	10	20
70	69	70	10	20
72	72	71	10	20
73	73	72	10	20
74	73	74	10	20
75	74	75	10	20
77	77	76	10	20
78	78	77	10	20
79	78	79	10	20
80	79	80	10	20
82	82	81	10	20
83	N83	82	10	20
84	83	84	10	20
85	84	85	10	20
87	87	86	10	20
88	88	87	10	20
89	88	89	10	20
90	89	90	10	20
92	92	91	10	20
T93	N93	92	10	20
94	93	94	10	20
95	94	95	10	20
97	97	96	10	20
98	98	97	10	20
T99	98	99	10	20
100	99	100	10	20
1	RNV1	3	6	40
6	3	8	3	25
11	8	13	3	25
16	13	18	3	25
21	18	23	3	20

26	23	28	3	20
31	28	33	3	20
36	33	38	3	20
41	38	43	3	20
46	43	48	3	20
51	48	53	3	20
56	53	58	3	20
61	58	63	3	20
66	63	68	3	20
71	68	73	3	20
76	73	78	3	20
81	78	83	3	20
86	83	88	3	20
91	88	93	3	20
96	93	98	3	20
101	102	RNV1	70	100
B1	RNF2	101	#N/A	#N/A Bomba
V1	101	102	#N/A	100 Válvula

APÊNDICE B

Dados e Resultados do Dimensionamento da Edificação com 20 Pavimentos com Pressão Mínima na Entrada da Edificação de 25 mca

Edifício	de 20 pa	vimen	tos com pressão m	ínima de 25 mca
Trecho	Início	Fim	Comprimento	Diâmetro
ID:	Nó:	Nó:	(m)	(mm)
1	RNF1	4	10	50
2	3	2	10	20
3	4	3	10	20
4	4	5	10	20
5	5	6	10	20
7	8	7	10	20
8	9	8	10	20
9	9	10	10	20
10	10	11	10	20
12	13	12	10	20
13	14	13	10	20
14	14	15	10	20
15	15	16	10	20
17	18	17	10	20
18	19	18	10	20
19	19	20	10	20
20	20	21	10	20
22	23	22	10	20
23	24	23	10	20
24	24	25	10	20
25	25	26	10	20
27	28	27	10	20
28	29	28	10	20
29	29	30	10	20
30	30	31	10	20
32	33	32	10	20
33	34	33	10	20
34	34	35	10	20
35	35	36	10	20
37	38	37	10	20
38	39	38	10	20
39	39	40	10	20
40	40	41	10	20
42	43	42	10	20
43	44	43	10	20
44	44	45	10	20
45	45	46	10	20
47	48	47	10	20
48	49	48	10	20
49	49	50	10	20
50	50	51	10	20

52	53	52	10	20
53	54	53	10	20
54	54	55	10	20
55	55	56	10	20
57	58	57	10	20
58	59	58	10	20
59	59	60	10	20
60	60	61	10	20
62	63	62	10	20
63	64	63	10	20
64	64	65	10	20
65	65	66	10	20
67	68	67	10	20
68	69	68	10	20
69	69	70	10	20
70	70	71	10	20
72	73	72	10	20
73	74	73	10	20
74	74	75	10	20
75	75	76	10	20
77	78	77	10	20
78	79	78	10	20
79	79	80	10	20
80	80	81	10	20
82	83	82	10	20
83	84	83	10	20
84	84	85	10	20
85	85	86	10	20
87	89	88	10	20
88	88	87	10	20
89	89	90	10	20
90	90	91	10	20
92	93	92	10	20
93	94	93	10	20
94	94	95	10	20
95	95	96	10	20
97	98	97	10	25
98	99	98	10	25
99	99	100	10	25
100	100	101	10	25
6	4	9	3	50
11	9	14	3	50
16	14	19	3	50
21	19	24	3	50

31	29	34	3	50
36	34	39	3	50
41	39	44	3	50
46	44	49	3	50
51	49	54	3	50
56	54	59	3	50
61	59	64	3	50
66	64	69	3	50
71	69	74	3	50
76	74	79	3	50
81	79	84	3	50
86	84	89	3	50
91	89	94	3	50
96	94	99	3	40
B1	24	29	#N/A	#N/A Bomba

APÊNDICE C

Dados e Resultados dos Dimensionamentos dos Cenários da Cidade Hipotética com Pressões Mínimas na Rede de 10 mca

				С	enários com p	ressões mínim	as na rede de 1	0 mca			
Trecho	Início	Fim	Comprimento				Diâmetr	ro (mm)			
ID:	Nó:	Nó:	(m)	Cenário 01	Cenário 02	Cenário 03	Cenário 04	Cenário 05	Cenário 06	Cenário 07	Cenário 08
1	9	1	440	50	50	50	50	50	100	100	50
2	1	2	70	50	50	50	50	50	75	75	100
3	2	3	70	50	50	50	75	75	75	100	150
4	3	4	70	50	50	75	75	100	75	100	150
5	4	5	70	50	75	75	100	100	100	150	150
6	5	6	70	50	75	75	100	100	100	150	200
7	6	7	70	50	50	50	50	75	75	150	150
8	7	8	70	50	50	50	50	50	50	75	75
9	8	9	95	50	50	50	50	50	50	50	50
10	9	27	70	50	50	75	75	75	100	100	75
11	27	20	95	50	50	50	50	50	50	50	50
12	20	8	70	50	50	50	50	50	50	75	50
13	6	10	70	50	75	75	100	100	100	100	100
14	10	17	100	50	50	50	50	50	50	100	75
15	17	7	70	50	50	50	50	75	100	150	200
16	17	20	100	50	50	50	50	50	50	50	50
17	27	28	70	50	75	75	75	100	100	100	100
18	28	21	95	50	50	50	50	50	100	100	50
19	21	20	70	50	50	75	75	75	75	100	75
20	21	17	100	50	50	50	75	100	100	150	200
21	17	11	100	50	50	50	50	50	50	50	50
22	11	10	70	50	50	50	75	100	100	100	100
23	28	29	70	50	75	100	100	100	150	150	100
24	29	22	95	50	50	50	50	50	75	100	100
25	22	21	70	75	75	75	100	150	100	150	200
26	 22	12	140	50	50	50	50	50	50	75	50
27	 12	11	70	50	50	50	75	100	75	100	75
28	11	21	140	50	50	50	50	50	75	50	100

29	20	10	140	50	50	50	50	50	50	50	50
30	29	30	70	50	75	100	100	100	150	200	150
31	30	23	95	50	50	50	50	50	75	100	75
32	23	22	70	75	75	75	100	150	100	150	200
33	23	13	140	50	50	50	50	50	50	75	50
34	13	12	70	50	50	50	75	100	75	100	75
35	30	31	70	50	100	100	100	100	150	200	150
36	31	24	95	50	50	50	50	50	75	100	75
37	24	23	70	100	75	100	100	150	100	150	250
38	13	14	70	50	50	50	75	100	75	75	75
39	14	24	140	50	50	50	50	75	50	50	50
40	14	18	100	50	50	50	50	50	50	50	100
41	18	15	100	50	50	50	50	50	50	50	50
42	18	25	100	50	50	50	50	50	50	50	100
43	18	24	100	50	50	50	50	50	50	50	50
44	15	14	70	50	50	50	50	75	75	75	50
45	25	24	70	75	75	100	100	150	100	150	250
46	25	15	140	50	50	50	50	50	75	75	50
47	15	16	70	50	50	50	50	100	50	50	50
48	16	19	70	50	50	50	50	50	50	50	50
49	19	26	70	50	50	50	50	50	50	50	75
50	26	25	70	100	100	100	100	150	150	150	250
51	31	34	140	50	100	100	100	100	200	200	150
52	32	34	140	50	50	50	50	50	50	50	50
53	26	34	95	50	50	50	50	50	100	100	250
54	32	33	70	50	50	50	50	50	50	50	50
55	33	35	70	50	50	50	50	75	50	50	75
56	35	39	110	75	75	75	75	75	75	75	75
57	39	34	70	50	100	100	100	100	200	250	300
58	39	43	95	75	50	50	100	50	75	150	100
59	43	26	70	100	75	100	150	200	100	150	100

60	19	48	125	50	50	50	50	50	50	50	50
61	48	16	125	50	50	50	50	75	50	50	50
62	48	43	120	50	50	50	50	50	50	50	50
63	35	36	70	75	100	100	100	100	100	100	100
64	36	40	110	50	50	50	50	50	50	50	50
65	40	39	70	50	75	100	150	100	200	250	300
66	40	44	95	50	50	50	50	50	50	75	50
67	44	43	70	75	75	100	100	200	100	100	100
68	36	37	70	100	100	100	100	100	100	100	100
69	37	41	110	50	50	50	50	50	50	50	50
70	41	40	70	50	100	100	150	100	200	250	300
71	41	45	95	50	50	50	75	50	75	100	100
72	45	44	70	75	75	100	100	200	100	100	100
73	45	47	135	50	50	50	50	75	75	100	100
74	47	49	65	50	50	50	50	50	75	75	75
75	49	48	175	50	50	50	50	50	50	50	50
76	49	50	70	50	50	50	50	50	50	75	75
77	37	38	70	100	100	100	100	100	100	100	100
78	38	42	110	50	50	50	50	50	50	50	50
79	42	41	70	50	100	100	150	100	200	300	300
80	42	46	95	50	50	100	75	200	100	75	75
81	46	45	70	75	75	100	100	200	100	100	100
82	38	54	80	50	50	50	50	50	50	50	50
83	54	42	80	50	100	150	150	200	250	300	300
84	54	61	150	50	50	75	100	75	75	100	100
85	61	46	70	75	75	75	100	75	75	100	100
86	54	51	70	75	100	150	150	250	250	300	300
87	52	51	60	100	150	200	200	250	300	350	150
88	52	55	60	50	50	50	50	50	50	50	50
89	55	51	60	100	100	100	100	100	100	100	350
90	55	56	55	100	100	100	100	100	100	100	350

91	56	62	85	50	50	50	50	50	50	50	50
92	62	61	60	50	50	50	50	50	50	75	50
93	56	54	100	50	50	50	50	100	50	50	100
94	62	73	75	50	50	50	50	50	50	50	50
95	73	61	75	50	50	50	50	50	50	100	75
96	73	69	75	50	50	50	50	50	50	75	50
97	73	68	75	50	50	50	50	50	50	50	50
98	62	69	135	50	50	50	50	50	50	50	50
99	69	68	65	50	50	50	50	50	50	50	50
100	68	61	135	50	50	50	50	50	50	50	50
101	69	70	75	50	50	50	75	75	75	75	75
102	70	74	70	50	50	50	50	50	50	50	50
103	74	63	70	75	75	75	75	75	75	75	100
104	63	62	60	50	50	50	50	50	50	50	75
105	56	63	100	100	100	100	100	150	100	100	350
106	52	53	60	100	150	200	200	250	300	350	150
107	53	59	75	75	100	100	100	75	100	100	100
108	59	60	55	50	50	50	50	50	50	50	50
109	60	63	100	50	50	50	50	50	50	50	50
110	57	59	70	50	50	50	50	50	50	50	50
111	57	53	70	100	150	150	200	250	250	350	150
112	57	80	75	50	50	150	150	250	250	300	100
113	80	60	85	50	50	50	50	50	50	50	50
114	80	59	75	50	100	100	100	75	100	100	100
115	63	67	85	100	100	100	100	100	100	100	350
116	67	75	75	50	50	50	75	50	50	75	100
117	75	74	85	50	50	50	50	50	50	50	100
118	75	71	75	50	50	50	75	50	50	75	100
119	71	70	85	75	75	75	75	75	75	75	75
120	75	76	55	50	50	50	50	50	50	50	50
121	76	77	55	50	50	50	50	50	50	50	50
122	77	72	75	50	50	50	75	75	75	75	50

123	72	71	85	75	75	75	100	75	75	100	100
124	77	65	75	50	50	75	100	100	75	100	100
125	65	67	85	75	75	75	75	100	100	75	350
126	57	58	80	100	100	100	100	100	100	100	100
127	58	78	65	50	50	50	50	50	50	50	50
128	78	79	50	50	50	50	50	50	50	50	50
129	79	65	80	50	50	100	100	100	100	150	50
130	80	79	70	50	100	150	150	250	250	300	100
131	78	80	55	50	50	50	75	75	75	75	75
132	58	81	100	100	100	100	100	100	100	100	100
133	81	82	55	50	50	50	50	50	50	50	50
134	82	78	100	50	50	50	75	75	75	75	75
135	82	83	55	50	50	50	50	50	50	50	75
136	83	79	100	50	100	100	150	250	250	300	100
137	83	84	80	50	100	75	100	100	150	250	100
138	84	65	100	75	75	100	75	100	100	75	350
139	84	85	75	50	50	75	50	100	100	250	300
140	85	77	100	50	50	75	75	75	50	75	100
141	85	86	75	50	50	50	75	75	100	250	250
142	86	72	100	75	75	75	100	100	75	100	100
143	81	88	100	75	100	100	100	100	100	100	100
144	88	89	55	50	75	50	50	75	50	50	50
145	89	82	100	50	50	50	75	75	75	50	75
146	89	90	55	50	50	50	50	50	50	50	50
147	90	83	100	50	50	100	100	200	200	200	75
148	90	91	80	50	50	50	75	200	150	75	100
149	91	84	100	75	100	100	100	100	150	100	200
150	91	92	75	50	75	50	75	200	100	50	100
151	92	85	100	50	50	100	50	100	50	75	100
152	92	93	75	50	75	100	75	150	100	50	100
153	93	86	100	50	50	50	100	75	75	100	250

154	86	95	55	75	75	75	75	75	100	250	100
155	93	95	55	50	50	50	50	50	75	250	50
156	95	87	95	50	50	50	75	50	100	100	100
157	87	94	85	50	50	50	50	50	50	50	50
158	93	94	75	75	75	100	100	150	100	250	250
159	88	96	100	75	75	75	100	100	100	100	100
160	96	97	55	50	50	50	75	50	50	50	75
161	97	89	100	50	50	50	75	75	50	50	50
162	97	98	55	50	50	50	75	75	50	50	100
163	98	90	100	50	50	75	75	100	150	150	100
164	98	99	80	50	50	50	75	50	150	75	75
165	99	91	100	50	100	100	100	100	150	100	200
166	99	100	75	50	50	75	50	100	50	50	150
167	100	92	100	50	50	50	50	150	50	75	100
168	100	101	75	50	50	50	50	50	50	50	50
169	101	93	100	50	50	50	50	50	50	50	50
170	101	94	135	50	50	50	50	50	50	50	50
171	96	102	100	50	75	75	75	75	75	75	100
172	102	103	55	50	50	50	50	50	50	50	50
173	103	97	100	50	50	50	50	50	50	50	75
174	103	104	55	50	50	50	50	50	50	50	50
175	104	98	100	50	50	75	75	100	100	150	75
176	104	105	80	50	50	50	50	50	75	100	75
177	105	99	100	50	100	75	100	50	200	100	150
178	105	106	75	50	50	75	100	50	100	100	100
179	106	100	100	50	50	75	50	150	50	75	150
180	106	101	120	50	50	50	50	50	50	50	50
181	102	107	100	50	50	50	50	75	50	50	75
182	107	108	55	50	50	50	50	50	50	50	100
183	108	103	100	50	50	50	50	50	50	50	50
184	108	109	55	50	50	75	50	75	50	75	100

185	109	104	100	50	50	50	75	100	75	100	75
186	109	110	80	50	50	75	75	100	75	75	100
187	110	105	100	50	100	50	50	50	150	100	100
188	110	111	75	75	100	75	75	100	150	100	100
189	111	106	100	75	75	100	100	150	100	100	150
190	111	119	170	50	75	75	75	100	100	100	100
191	119	120	170	50	50	50	50	50	75	100	50
192	120	121	210	50	50	50	50	50	50	75	50
193	121	122	190	50	50	50	50	50	50	50	50
194	122	123	310	50	50	50	50	50	50	50	50
195	123	129	180	50	50	50	50	50	100	100	75
196	129	128	130	50	75	75	75	75	100	150	100
197	128	122	155	50	50	50	50	100	50	50	100
198	128	121	210	50	50	50	50	50	50	100	100
199	128	127	210	50	75	100	100	100	100	75	100
200	127	120	165	50	50	50	50	50	50	50	100
201	127	119	270	50	50	50	50	50	50	50	50
202	127	111	290	50	50	100	100	100	100	75	100
203	111	126	130	75	75	75	75	150	150	75	75
204	127	126	170	50	50	50	50	50	75	50	50
205	129	133	240	50	50	50	50	50	50	50	50
206	133	124	350	50	50	50	75	100	75	150	150
207	126	124	250	50	50	50	50	100	100	50	50
208	126	118	270	50	50	50	50	50	75	50	50
209	118	124	160	50	50	50	75	75	50	200	200
210	118	117	40	50	50	50	75	75	50	200	250
211	117	116	50	50	50	50	100	75	100	200	250
212	94	125	175	75	75	100	100	150	150	250	250
213	87	125	245	50	50	50	75	50	100	100	100
214	125	116	85	50	50	75	100	100	100	200	250
215	125	114	60	75	75	75	75	100	150	150	150
216	114	115	20	50	50	50	50	75	100	100	100

217	115	113	40	50	50	50	50	50	50	50	50
218	113	112	20	50	50	50	50	100	75	50	75
219	112	114	40	50	50	75	50	100	75	75	100
220	115	130	85	50	50	50	50	50	100	75	75
221	130	131	100	50	50	50	50	50	50	50	50
222	131	113	25	50	50	50	50	75	75	50	75
223	112	132	110	50	50	50	50	50	50	50	50
224	132	118	60	50	50	50	50	50	75	50	50
225	117	132	55	50	50	50	50	50	75	50	50
226	116	112	80	50	50	50	50	50	50	50	75
227	133	134	265	50	50	50	75	100	75	75	150
228	123	134	460	50	50	50	50	50	50	50	50
229	133	123	215	50	50	50	50	50	50	50	100
230	128	124	140	50	50	50	50	75	75	150	150
231	38	51	105	100	100	100	100	100	100	100	100
232	44	48	120	50	50	50	50	75	50	50	50
233	48	47	150	50	50	50	50	50	50	50	50
235	45	51	2000	200	200	250	250	350	350	500	500
234	49	45	10	200	200	250	250	350	350	500	500
237	50	49	10	200	200	250	250	350	350	500	500
				#N/A							
236	48	50	#N/A	Bomba							

APÊNDICE D

Dados e Resultados dos Dimensionamentos dos Cenários da Cidade Hipotética com Pressões Mínimas na Rede de 25 mca

					Cenários com	pressões mínim	as na rede de 2	25 mca			
Trecho	Início	Fim	Comprimento				Diâmet	ro (mm)			
ID:	Nó:	Nó:	(m)	Cenário 01	Cenário 02	Cenário 03	Cenário 04	Cenário 05	Cenário 06	Cenário 07	Cenário 08
1	9	1	440	50	50	50	50	50	100	100	50
2	1	2	70	50	50	50	50	50	75	75	150
3	2	3	70	50	50	50	75	75	75	100	150
4	3	4	70	50	75	75	75	100	75	100	150
5	4	5	70	50	75	75	100	100	100	150	200
6	5	6	70	75	75	100	100	100	100	150	200
7	6	7	70	50	50	75	50	75	100	150	200
8	7	8	70	50	50	50	50	50	50	75	75
9	8	9	95	50	50	50	50	50	50	50	50
10	9	27	70	50	50	75	75	75	100	100	100
11	27	20	95	50	50	50	50	50	50	75	50
12	20	8	70	50	50	50	50	50	50	75	75
13	6	10	70	50	75	75	100	100	100	100	100
14	10	17	100	50	50	50	50	50	50	100	75
15	17	7	70	50	50	75	50	75	100	150	200
16	17	20	100	50	50	50	50	50	50	50	50
17	27	28	70	50	75	75	75	100	100	150	100
18	28	21	95	50	50	50	50	50	100	100	50
19	21	20	70	50	50	75	75	75	75	100	100
20	21	17	100	50	50	75	75	100	100	150	200
21	17	11	100	50	50	50	50	50	50	50	50
22	11	10	70	50	50	50	75	100	100	100	100
23	28	29	70	50	75	100	100	100	150	150	100
24	29	22	95	50	50	50	50	50	75	100	100
25	22	21	70	75	75	100	100	150	100	150	250
26	22	12	140	50	50	50	50	50	50	75	50
27	12	11	70	50	50	50	75	100	75	100	75

28	11	21	140	50	50	50	50	50	75	50	100
29	20	10	140	50	50	50	50	50	50	50	50
30	29	30	70	50	75	100	100	100	150	200	150
31	30	23	95	50	50	50	50	50	75	100	75
32	23	22	70	100	75	100	100	150	100	150	250
33	23	13	140	50	50	50	50	50	50	75	50
34	13	12	70	50	50	50	75	100	75	100	75
35	30	31	70	50	100	100	100	100	200	200	150
36	31	24	95	50	50	50	50	50	75	100	75
37	24	23	70	100	75	100	100	150	100	150	250
38	13	14	70	50	50	50	75	100	75	75	75
39	14	24	140	50	50	50	50	75	50	50	50
40	14	18	100	50	50	50	50	50	50	50	100
41	18	15	100	50	50	50	50	50	50	50	50
42	18	25	100	50	50	50	50	50	50	50	100
43	18	24	100	50	50	50	50	50	50	50	50
44	15	14	70	50	50	50	50	75	75	75	50
45	25	24	70	100	75	100	100	150	100	150	250
46	25	15	140	50	50	50	50	50	75	75	50
47	15	16	70	50	50	50	50	100	50	50	50
48	16	19	70	50	50	50	50	50	50	50	75
49	19	26	70	50	50	50	50	50	50	50	75
50	26	25	70	100	100	100	100	200	150	150	250
51	31	34	140	50	100	100	100	100	200	250	150
52	32	34	140	50	50	50	50	50	50	50	50
53	26	34	95	50	50	50	50	50	100	100	300
54	32	33	70	50	50	50	50	50	50	50	50
55	33	35	70	50	50	50	50	75	50	50	75
56	35	39	110	75	75	75	75	75	75	75	75
57	39	34	70	50	100	100	100	100	200	250	300
58	39	43	95	75	50	50	100	50	75	150	100

59	43	26	70	100	75	100	150	200	100	150	100
60	19	48	125	50	50	50	50	50	50	50	50
61	48	16	125	50	50	50	50	75	50	50	50
62	48	43	120	50	50	50	50	50	50	50	50
63	35	36	70	100	100	100	100	100	100	100	100
64	36	40	110	50	50	50	50	50	50	50	50
65	40	39	70	50	100	100	150	100	200	250	300
66	40	44	95	50	50	50	50	50	50	75	75
67	44	43	70	75	75	100	100	200	100	100	100
68	36	37	70	100	100	100	100	100	100	100	100
69	37	41	110	50	50	50	50	50	50	50	50
70	41	40	70	50	100	100	150	100	250	250	300
71	41	45	95	50	50	50	75	50	100	100	100
72	45	44	70	75	75	100	100	200	100	100	100
73	45	47	135	50	50	50	50	75	75	100	100
74	47	49	65	50	50	50	50	50	75	100	100
75	49	48	175	50	50	50	50	50	50	50	50
76	49	50	70	50	50	50	50	50	50	75	100
77	37	38	70	100	100	100	100	100	100	100	100
78	38	42	110	50	50	50	50	50	50	50	50
79	42	41	70	50	100	100	150	100	250	300	350
80	42	46	95	50	50	100	75	200	100	75	75
81	46	45	70	75	75	100	100	200	100	100	100
82	38	54	80	50	50	50	50	50	50	50	50
83	54	42	80	50	100	150	150	200	250	300	350
84	54	61	150	50	50	75	100	75	75	100	100
85	61	46	70	75	75	75	100	75	75	100	100
86	54	51	70	75	100	150	150	250	250	300	350
87	52	51	60	150	150	200	200	250	300	350	150
88	52	55	60	50	50	50	50	50	50	50	50
89	55	51	60	100	100	100	100	100	100	100	500

90	55	56	55	100	100	100	100	100	100	100	500
91	56	62	85	50	50	50	50	50	50	50	50
92	62	61	60	50	50	50	50	50	50	75	50
93	56	54	100	50	50	50	50	100	50	50	100
94	62	73	75	50	50	50	50	50	50	50	50
95	73	61	75	50	50	50	50	75	50	100	75
96	73	69	75	50	50	50	50	50	50	75	50
97	73	68	75	50	50	50	50	50	50	50	50
98	62	69	135	50	50	50	50	50	50	50	50
99	69	68	65	50	50	50	50	50	50	50	50
100	68	61	135	50	50	50	50	50	50	50	50
101	69	70	75	50	50	50	75	75	75	75	75
102	70	74	70	50	50	50	50	50	50	50	75
103	74	63	70	75	75	75	75	75	75	75	100
104	63	62	60	50	50	50	50	50	50	50	75
105	56	63	100	100	100	100	100	150	100	100	500
106	52	53	60	150	150	200	200	250	300	350	150
107	53	59	75	75	100	100	100	75	100	100	100
108	59	60	55	50	50	50	50	50	50	50	50
109	60	63	100	50	50	50	50	50	50	50	75
110	57	59	70	50	50	50	50	50	50	50	50
111	57	53	70	100	150	150	200	250	300	350	150
112	57	80	75	50	100	150	150	250	250	350	100
113	80	60	85	50	50	50	50	50	50	50	50
114	80	59	75	50	100	100	100	75	100	100	100
115	63	67	85	100	100	100	100	100	100	100	350
116	67	75	75	50	50	50	75	50	50	75	100
117	75	74	85	50	50	50	50	50	50	50	100
118	75	71	75	50	50	50	75	50	50	75	100
119	71	70	85	75	75	75	75	75	75	75	75
120	75	76	55	50	50	50	50	50	50	50	50

121	76	77	55	50	50	50	50	50	50	50	50
122	77	72	75	50	50	50	75	75	75	75	50
123	72	71	85	75	75	75	100	75	75	100	100
124	77	65	75	50	50	75	100	100	75	100	100
125	65	67	85	75	75	75	75	100	100	75	350
126	57	58	80	100	100	100	100	100	100	100	100
127	58	78	65	50	50	50	50	50	50	50	50
128	78	79	50	50	50	50	50	50	50	50	50
129	79	65	80	50	50	100	100	100	100	150	75
130	80	79	70	50	100	150	150	250	250	300	100
131	78	80	55	50	50	50	75	75	75	75	75
132	58	81	100	100	100	100	100	100	100	100	100
133	81	82	55	50	50	50	50	50	50	50	75
134	82	78	100	50	50	50	75	75	75	75	75
135	82	83	55	50	50	50	50	50	50	50	100
136	83	79	100	50	100	150	150	250	250	300	100
137	83	84	80	50	100	100	100	100	150	250	100
138	84	65	100	75	75	100	75	100	100	75	350
139	84	85	75	50	50	100	75	100	100	250	300
140	85	77	100	50	50	75	75	75	50	75	100
141	85	86	75	50	50	50	100	75	100	250	300
142	86	72	100	75	75	75	100	100	75	100	100
143	81	88	100	75	100	100	100	100	100	100	100
144	88	89	55	50	75	50	50	75	50	50	50
145	89	82	100	50	50	50	75	75	75	50	75
146	89	90	55	50	50	50	50	50	50	50	50
147	90	83	100	50	50	100	100	200	200	200	75
148	90	91	80	50	50	75	75	200	150	100	100
149	91	84	100	75	100	100	100	100	150	100	200
150	91	92	75	50	75	50	75	200	150	50	100
151	92	85	100	50	50	100	50	100	50	100	100

152	92	93	75	50	75	100	75	150	150	50	100
153	93	86	100	50	50	50	100	75	75	100	300
154	86	95	55	75	75	75	100	75	100	250	100
155	93	95	55	50	50	50	50	50	75	250	50
156	95	87	95	50	50	50	100	50	100	100	100
157	87	94	85	50	50	50	50	50	50	50	50
158	93	94	75	75	75	100	100	150	150	250	300
159	88	96	100	75	75	75	100	100	100	100	100
160	96	97	55	50	50	50	75	50	50	50	75
161	97	89	100	50	50	50	75	75	50	50	50
162	97	98	55	50	50	50	75	75	50	50	100
163	98	90	100	50	50	100	75	100	150	150	100
164	98	99	80	50	50	50	75	50	150	75	100
165	99	91	100	75	100	100	100	100	150	100	200
166	99	100	75	50	50	75	50	100	50	50	150
167	100	92	100	50	50	50	50	150	50	100	100
168	100	101	75	50	50	50	50	50	50	50	50
169	101	93	100	50	50	50	50	50	50	50	75
170	101	94	135	50	50	50	50	50	50	50	50
171	96	102	100	50	75	75	75	75	75	75	100
172	102	103	55	50	50	50	50	50	50	50	75
173	103	97	100	50	50	50	50	50	50	50	75
174	103	104	55	50	50	50	50	50	50	50	100
175	104	98	100	50	50	75	75	100	100	150	75
176	104	105	80	50	50	50	50	50	75	100	100
177	105	99	100	75	100	75	100	50	200	100	150
178	105	106	75	50	50	75	100	50	100	100	100
179	106	100	100	50	50	75	50	150	50	100	150
180	106	101	120	50	50	50	50	50	50	50	50
181	102	107	100	50	50	50	50	75	50	50	75
182	107	108	55	50	50	50	50	50	50	50	100

183	108	103	100	50	50	50	50	50	50	50	75
184	108	109	55	50	50	75	50	75	50	75	100
185	109	104	100	50	50	75	75	100	75	100	75
186	109	110	80	50	50	75	75	100	75	75	100
187	110	105	100	50	100	50	50	50	200	100	100
188	110	111	75	75	100	75	75	100	200	100	100
189	111	106	100	75	75	100	100	150	100	150	150
190	111	119	170	50	75	75	75	100	100	100	100
191	119	120	170	50	50	50	50	50	75	100	75
192	120	121	210	50	50	50	50	50	50	75	50
193	121	122	190	50	50	50	50	50	50	50	50
194	122	123	310	50	50	50	50	50	50	50	50
195	123	129	180	50	50	50	50	50	100	100	75
196	129	128	130	50	75	75	75	75	100	150	100
197	128	122	155	50	50	50	50	100	75	75	100
198	128	121	210	50	50	50	50	50	50	100	100
199	128	127	210	50	75	100	100	100	100	75	100
200	127	120	165	50	50	50	50	50	50	50	100
201	127	119	270	50	50	50	50	50	50	50	50
202	127	111	290	50	75	100	100	100	100	75	100
203	111	126	130	75	75	75	75	150	150	75	75
204	127	126	170	50	50	50	50	75	75	50	50
205	129	133	240	50	50	50	50	50	50	50	50
206	133	124	350	50	50	50	75	100	100	150	150
207	126	124	250	50	50	50	50	100	100	50	50
208	126	118	270	50	50	50	50	50	75	50	50
209	118	124	160	50	50	50	75	75	50	200	250
210	118	117	40	50	50	50	75	75	50	200	250
211	117	116	50	50	50	75	100	75	100	200	250
212	94	125	175	75	75	100	100	150	150	250	300
213	87	125	245	50	50	50	75	50	100	100	100

214	125	116	85	50	50	75	100	100	100	200	250
215	125	114	60	75	75	75	75	100	150	150	150
216	114	115	20	50	50	50	50	75	100	100	100
217	115	113	40	50	50	50	50	50	50	50	50
218	113	112	20	50	50	50	50	100	75	50	75
219	112	114	40	50	50	75	50	100	75	75	100
220	115	130	85	50	50	50	50	50	100	75	75
221	130	131	100	50	50	50	50	50	50	50	50
222	131	113	25	50	50	50	50	75	75	50	75
223	112	132	110	50	50	50	50	50	50	50	50
224	132	118	60	50	50	50	50	50	75	50	50
225	117	132	55	50	50	50	50	50	75	50	50
226	116	112	80	50	50	50	50	50	50	50	75
227	133	134	265	50	50	50	75	100	75	75	150
228	123	134	460	50	50	50	50	50	50	50	50
229	133	123	215	50	50	50	50	50	50	50	100
230	128	124	140	50	50	50	50	75	75	150	200
231	38	51	105	100	100	100	100	100	100	100	100
232	44	48	120	50	50	50	50	75	50	50	50
233	48	47	150	50	50	50	50	50	50	50	50
235	45	51	2000	200	200	250	250	350	350	500	500
	10			#N/A							
234	48	45	#N/A	Bomba							